• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Fgl
      • Vwsim
      • Vl
        • Syntax
        • Loader
        • Warnings
        • Getting-started
        • Utilities
        • Printer
        • Kit
        • Mlib
        • Transforms
          • Unparameterization
          • Elaborate
          • Addnames
          • Annotate
            • Increment-elim
            • Make-implicit-wires
            • Basic-bind-elim
              • Vl-modulelist-apply-binddelta
              • Vl-interfacelist-apply-binddelta
              • Vl-bindelim-main
              • Vl-bindelim-bindlist
              • Vl-bindelim-find-global-target
              • Vl-interfacelist-bindelim
              • Vl-modulelist-bindelim
              • Vl-interface-bindelim
              • Vl-module-bindelim
                • Vl-bindelim-institem
                • Vl-warn-bindintentlist-undefined
                • Vl-warn-bindintent-undefined
                • Vl-interfacelist-bindelim-insttable
                • Vl-modulelist-bindelim-insttable
                • Vl-warn-binddelta-undefined
                • Vl-interface-bindelim-insttable
                • Vl-interface-apply-binddelta
                • Vl-design-bindelim-pass2
                • Vl-bindelim-modinstlist-add-atts
                • Vl-module-bindelim-insttable
                • Vl-module-apply-binddelta
                • Vl-bindelim-modinst-add-atts
                • Vl-design-bindelim-pass1
                • Vl-bindcontext
                • Vl-bindintent->modinsts
                • Vl-bindelim-insttable
                • Vl-bindintentlist->modinsts
                • Vl-binddelta
                • Vl-design-bindelim
                • Vl-bindelim-institemlist
              • Argresolve
              • Basicsanity
              • Portdecl-sign
              • Enum-names
              • Port-resolve
              • Udp-elim
              • Vl-annotate-design
              • Vl-annotate-module
            • Clean-warnings
            • Eliminitial
            • Custom-transform-hooks
            • Problem-modules
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Basic-bind-elim

    Vl-module-bindelim

    Signature
    (vl-module-bindelim x ss itbl delta) → (mv new-x delta)
    Arguments
    x — Guard (vl-module-p x).
    ss — Guard (vl-scopestack-p ss).
    itbl — Guard (vl-bindelim-insttable-p itbl).
    delta — Guard (vl-binddelta-p delta).
    Returns
    new-x — Type (vl-module-p new-x).
    delta — Type (vl-binddelta-p delta).

    Definitions and Theorems

    Function: vl-module-bindelim

    (defun vl-module-bindelim (x ss itbl delta)
      (declare (xargs :guard (and (vl-module-p x)
                                  (vl-scopestack-p ss)
                                  (vl-bindelim-insttable-p itbl)
                                  (vl-binddelta-p delta))))
      (let ((__function__ 'vl-module-bindelim))
        (declare (ignorable __function__))
        (b* (((vl-module x) (vl-module-fix x))
             (blob (vl-module->genblob x))
             ((mv warnings delta new-blob)
              (vl-genblob-bindelim blob ss x itbl delta nil x.warnings))
             (new-x (change-vl-module (vl-genblob->module new-blob x)
                                      :warnings warnings)))
          (mv new-x delta))))

    Theorem: vl-module-p-of-vl-module-bindelim.new-x

    (defthm vl-module-p-of-vl-module-bindelim.new-x
      (b* (((mv ?new-x ?delta)
            (vl-module-bindelim x ss itbl delta)))
        (vl-module-p new-x))
      :rule-classes :rewrite)

    Theorem: vl-binddelta-p-of-vl-module-bindelim.delta

    (defthm vl-binddelta-p-of-vl-module-bindelim.delta
      (b* (((mv ?new-x ?delta)
            (vl-module-bindelim x ss itbl delta)))
        (vl-binddelta-p delta))
      :rule-classes :rewrite)

    Theorem: vl-module-bindelim-of-vl-module-fix-x

    (defthm vl-module-bindelim-of-vl-module-fix-x
      (equal (vl-module-bindelim (vl-module-fix x)
                                 ss itbl delta)
             (vl-module-bindelim x ss itbl delta)))

    Theorem: vl-module-bindelim-vl-module-equiv-congruence-on-x

    (defthm vl-module-bindelim-vl-module-equiv-congruence-on-x
      (implies (vl-module-equiv x x-equiv)
               (equal (vl-module-bindelim x ss itbl delta)
                      (vl-module-bindelim x-equiv ss itbl delta)))
      :rule-classes :congruence)

    Theorem: vl-module-bindelim-of-vl-scopestack-fix-ss

    (defthm vl-module-bindelim-of-vl-scopestack-fix-ss
      (equal (vl-module-bindelim x (vl-scopestack-fix ss)
                                 itbl delta)
             (vl-module-bindelim x ss itbl delta)))

    Theorem: vl-module-bindelim-vl-scopestack-equiv-congruence-on-ss

    (defthm vl-module-bindelim-vl-scopestack-equiv-congruence-on-ss
      (implies (vl-scopestack-equiv ss ss-equiv)
               (equal (vl-module-bindelim x ss itbl delta)
                      (vl-module-bindelim x ss-equiv itbl delta)))
      :rule-classes :congruence)

    Theorem: vl-module-bindelim-of-vl-bindelim-insttable-fix-itbl

    (defthm vl-module-bindelim-of-vl-bindelim-insttable-fix-itbl
      (equal (vl-module-bindelim x ss (vl-bindelim-insttable-fix itbl)
                                 delta)
             (vl-module-bindelim x ss itbl delta)))

    Theorem: vl-module-bindelim-vl-bindelim-insttable-equiv-congruence-on-itbl

    (defthm
      vl-module-bindelim-vl-bindelim-insttable-equiv-congruence-on-itbl
      (implies (vl-bindelim-insttable-equiv itbl itbl-equiv)
               (equal (vl-module-bindelim x ss itbl delta)
                      (vl-module-bindelim x ss itbl-equiv delta)))
      :rule-classes :congruence)

    Theorem: vl-module-bindelim-of-vl-binddelta-fix-delta

    (defthm vl-module-bindelim-of-vl-binddelta-fix-delta
      (equal (vl-module-bindelim x ss itbl (vl-binddelta-fix delta))
             (vl-module-bindelim x ss itbl delta)))

    Theorem: vl-module-bindelim-vl-binddelta-equiv-congruence-on-delta

    (defthm vl-module-bindelim-vl-binddelta-equiv-congruence-on-delta
      (implies (vl-binddelta-equiv delta delta-equiv)
               (equal (vl-module-bindelim x ss itbl delta)
                      (vl-module-bindelim x ss itbl delta-equiv)))
      :rule-classes :congruence)