• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Fgl
      • Vwsim
      • Vl
        • Syntax
        • Loader
        • Warnings
        • Getting-started
        • Utilities
        • Printer
        • Kit
          • Vl-lint
          • Vl-server
          • Vl-gather
          • Vl-zip
            • Vl-zip-opts-p
            • Vl-zipfile
              • Vl-zipfile-fix
              • Vl-read-zip-header
              • Vl-maybe-zipfile
              • Vl-read-zip
              • Make-vl-zipfile
              • Vl-zipfile-equiv
                • Vl-zipfile-p
                • Change-vl-zipfile
                • Vl-zipfile->syntax
                • Vl-zipfile->filemap
                • Vl-zipfile->design
                • Vl-zipfile->defines
                • Vl-zipfile->name
                • Vl-zipfile->ltime
                • Vl-zipfile->date
                • Vl-write-zip
              • *vl-zip-help*
              • Vl-zip-top
              • Vl-zip-main
            • Vl-main
            • Split-plusargs
            • Vl-shell
            • Vl-json
          • Mlib
          • Transforms
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-zipfile

    Vl-zipfile-equiv

    Basic equivalence relation for vl-zipfile structures.

    Definitions and Theorems

    Function: vl-zipfile-equiv$inline

    (defun vl-zipfile-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (vl-zipfile-p acl2::x)
                                  (vl-zipfile-p acl2::y))))
      (equal (vl-zipfile-fix acl2::x)
             (vl-zipfile-fix acl2::y)))

    Theorem: vl-zipfile-equiv-is-an-equivalence

    (defthm vl-zipfile-equiv-is-an-equivalence
      (and (booleanp (vl-zipfile-equiv x y))
           (vl-zipfile-equiv x x)
           (implies (vl-zipfile-equiv x y)
                    (vl-zipfile-equiv y x))
           (implies (and (vl-zipfile-equiv x y)
                         (vl-zipfile-equiv y z))
                    (vl-zipfile-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: vl-zipfile-equiv-implies-equal-vl-zipfile-fix-1

    (defthm vl-zipfile-equiv-implies-equal-vl-zipfile-fix-1
      (implies (vl-zipfile-equiv acl2::x x-equiv)
               (equal (vl-zipfile-fix acl2::x)
                      (vl-zipfile-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-zipfile-fix-under-vl-zipfile-equiv

    (defthm vl-zipfile-fix-under-vl-zipfile-equiv
      (vl-zipfile-equiv (vl-zipfile-fix acl2::x)
                        acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-vl-zipfile-fix-1-forward-to-vl-zipfile-equiv

    (defthm equal-of-vl-zipfile-fix-1-forward-to-vl-zipfile-equiv
      (implies (equal (vl-zipfile-fix acl2::x) acl2::y)
               (vl-zipfile-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-vl-zipfile-fix-2-forward-to-vl-zipfile-equiv

    (defthm equal-of-vl-zipfile-fix-2-forward-to-vl-zipfile-equiv
      (implies (equal acl2::x (vl-zipfile-fix acl2::y))
               (vl-zipfile-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-zipfile-equiv-of-vl-zipfile-fix-1-forward

    (defthm vl-zipfile-equiv-of-vl-zipfile-fix-1-forward
      (implies (vl-zipfile-equiv (vl-zipfile-fix acl2::x)
                                 acl2::y)
               (vl-zipfile-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-zipfile-equiv-of-vl-zipfile-fix-2-forward

    (defthm vl-zipfile-equiv-of-vl-zipfile-fix-2-forward
      (implies (vl-zipfile-equiv acl2::x (vl-zipfile-fix acl2::y))
               (vl-zipfile-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)