• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
        • Svstmt
        • Sv-tutorial
        • Expressions
          • Rewriting
          • Svex
            • Svar
              • Svar-p
              • Svar-fix
              • Make-svar
              • Svar-equiv
              • Svar->props
              • Svar->delay
                • Svar->bits
                • Change-svar
                • Svarlist
                • Svar->name
                • Svar-map
                • Svar-alist
              • Least-fixpoint
              • Svex-p
              • Svex-select
              • Svex-alist
              • Svex-equiv
              • Svexlist
              • Svex-call
              • Fnsym
              • Svex-quote
              • Svex-var
              • Svcall-rw
              • Svcall
              • Svex-kind
              • Svcall*
              • Svex-fix
              • Svex-count
              • Svex-1z
              • Svex-1x
              • Svex-z
              • Svex-x
            • Bit-blasting
            • Functions
            • 4vmask
            • Why-infinite-width
            • Svex-vars
            • Evaluation
            • Values
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Svar

    Svar->delay

    Get the delay field from a svar.

    Signature
    (svar->delay x) → delay
    Arguments
    x — Guard (svar-p x).
    Returns
    delay — Type (natp delay).

    This is an ordinary field accessor created by defprod.

    Definitions and Theorems

    Function: svar->delay$inline

    (defun svar->delay$inline (x)
      (declare (xargs :guard (svar-p x)))
      (declare (xargs :guard t))
      (let ((__function__ 'svar->delay))
        (declare (ignorable __function__))
        (mbe :logic
             (b* ((x (and t x)))
               (nfix (if (atom x)
                         0
                       (b* ((rest (cddr x))
                            ((when (integerp rest))
                             (loghead 4 rest))
                            ((when (integerp (first rest)))
                             (first rest)))
                         (cdr (first rest))))))
             :exec
             (if (atom x)
                 0
               (b* ((rest (cddr x))
                    ((when (integerp rest))
                     (loghead 4 rest))
                    ((when (integerp (first rest)))
                     (first rest)))
                 (cdr (first rest)))))))

    Theorem: natp-of-svar->delay

    (defthm natp-of-svar->delay
      (b* ((delay (svar->delay$inline x)))
        (natp delay))
      :rule-classes :rewrite)

    Theorem: svar->delay$inline-of-svar-fix-x

    (defthm svar->delay$inline-of-svar-fix-x
      (equal (svar->delay$inline (svar-fix x))
             (svar->delay$inline x)))

    Theorem: svar->delay$inline-svar-equiv-congruence-on-x

    (defthm svar->delay$inline-svar-equiv-congruence-on-x
      (implies (svar-equiv x x-equiv)
               (equal (svar->delay$inline x)
                      (svar->delay$inline x-equiv)))
      :rule-classes :congruence)