• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
          • Address
          • Wire
          • Module
          • Lhs
          • Path
          • Svar-add-namespace
          • Design
            • Design-fix
            • Design-equiv
              • Make-design
              • Design-p
              • Design->modalist
              • Change-design
              • Design->top
            • Modinst
            • Lhs-add-namespace
            • Modalist
            • Path-add-namespace
            • Modname->submodnames
            • Name
            • Constraintlist-addr-p
            • Svex-alist-addr-p
            • Svar-map-addr-p
            • Lhspairs-addr-p
            • Modname
            • Assigns-addr-p
            • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-list-measure
            • Attributes
            • Modhier-measure
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Design

    Design-equiv

    Basic equivalence relation for design structures.

    Definitions and Theorems

    Function: design-equiv$inline

    (defun design-equiv$inline (x y)
      (declare (xargs :guard (and (design-p x) (design-p y))))
      (equal (design-fix x) (design-fix y)))

    Theorem: design-equiv-is-an-equivalence

    (defthm design-equiv-is-an-equivalence
      (and (booleanp (design-equiv x y))
           (design-equiv x x)
           (implies (design-equiv x y)
                    (design-equiv y x))
           (implies (and (design-equiv x y)
                         (design-equiv y z))
                    (design-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: design-equiv-implies-equal-design-fix-1

    (defthm design-equiv-implies-equal-design-fix-1
      (implies (design-equiv x x-equiv)
               (equal (design-fix x)
                      (design-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: design-fix-under-design-equiv

    (defthm design-fix-under-design-equiv
      (design-equiv (design-fix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-design-fix-1-forward-to-design-equiv

    (defthm equal-of-design-fix-1-forward-to-design-equiv
      (implies (equal (design-fix x) y)
               (design-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-design-fix-2-forward-to-design-equiv

    (defthm equal-of-design-fix-2-forward-to-design-equiv
      (implies (equal x (design-fix y))
               (design-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: design-equiv-of-design-fix-1-forward

    (defthm design-equiv-of-design-fix-1-forward
      (implies (design-equiv (design-fix x) y)
               (design-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: design-equiv-of-design-fix-2-forward

    (defthm design-equiv-of-design-fix-2-forward
      (implies (design-equiv x (design-fix y))
               (design-equiv x y))
      :rule-classes :forward-chaining)