• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
          • Address
          • Wire
          • Module
          • Lhs
          • Path
          • Svar-add-namespace
          • Design
          • Modinst
          • Lhs-add-namespace
          • Modalist
          • Path-add-namespace
          • Modname->submodnames
          • Name
          • Constraintlist-addr-p
          • Svex-alist-addr-p
          • Svar-map-addr-p
          • Lhspairs-addr-p
            • Modname
            • Assigns-addr-p
            • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-list-measure
            • Attributes
            • Modhier-measure
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Svmods

    Lhspairs-addr-p

    Signature
    (lhspairs-addr-p x) → *
    Arguments
    x — Guard (lhspairs-p x).

    Definitions and Theorems

    Function: lhspairs-addr-p

    (defun lhspairs-addr-p (x)
      (declare (xargs :guard (lhspairs-p x)))
      (let ((__function__ 'lhspairs-addr-p))
        (declare (ignorable __function__))
        (mbe :logic
             (svarlist-addr-p (lhspairs-vars x))
             :exec
             (b* ((x (lhspairs-fix x))
                  ((when (atom x)) t))
               (and (lhs-addr-p (caar x))
                    (lhs-addr-p (cdar x))
                    (lhspairs-addr-p (cdr x)))))))

    Theorem: lhspairs-addr-p-of-lhspairs-fix-x

    (defthm lhspairs-addr-p-of-lhspairs-fix-x
      (equal (lhspairs-addr-p (lhspairs-fix x))
             (lhspairs-addr-p x)))

    Theorem: lhspairs-addr-p-lhspairs-equiv-congruence-on-x

    (defthm lhspairs-addr-p-lhspairs-equiv-congruence-on-x
      (implies (lhspairs-equiv x x-equiv)
               (equal (lhspairs-addr-p x)
                      (lhspairs-addr-p x-equiv)))
      :rule-classes :congruence)