• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
        • Warnings
        • Primitives
        • Use-set
        • Syntax
        • Getting-started
        • Utilities
        • Loader
          • Preprocessor
            • Vl-iframe-p
            • Preprocessor-ifdef-minutia
            • Vl-preprocess-loop
            • Vl-read-until-end-of-define
            • Vl-expand-define
            • Vl-read-include
            • Vl-process-ifdef
            • Vl-substitute-into-macro-text
            • Vl-preprocess
            • Vl-define
            • Vl-process-define
            • Vl-process-undef
            • Preprocessor-include-minutia
            • Vl-split-define-text
            • Vl-read-timescale
            • Vl-line-up-define-formals-and-actuals
            • Vl-process-else
            • Vl-process-endif
            • Vl-istack-p
            • Vl-is-compiler-directive-p
            • Vl-check-remaining-formals-all-have-defaults
            • Vl-safe-previous-n
            • Vl-safe-next-n
            • Vl-defines
              • Vl-defines-fix
                • Vl-defines-p
                • Vl-defines-equiv
              • *vl-preprocess-clock*
            • Vl-loadconfig
            • Lexer
            • Vl-loadstate
            • Parser
            • Vl-load-merge-descriptions
            • Scope-of-defines
            • Vl-load-file
            • Vl-flush-out-descriptions
            • Vl-description
            • Vl-loadresult
            • Vl-read-file
            • Vl-find-basename/extension
            • Vl-find-file
            • Vl-read-files
            • Extended-characters
            • Vl-load
            • Vl-load-main
            • Vl-load-description
            • Vl-descriptions-left-to-load
            • Inject-warnings
            • Vl-load-descriptions
            • Vl-load-files
            • Vl-load-summary
            • Vl-collect-modules-from-descriptions
            • Vl-descriptionlist
          • Transforms
          • Lint
          • Mlib
          • Server
          • Kit
          • Printer
          • Esim-vl
          • Well-formedness
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-defines

    Vl-defines-fix

    (vl-defines-fix x) is a usual ACL2::fty list fixing function.

    Signature
    (vl-defines-fix x) → fty::newx
    Arguments
    x — Guard (vl-defines-p x).
    Returns
    fty::newx — Type (vl-defines-p fty::newx).

    In the logic, we apply vl-define-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: vl-defines-fix$inline

    (defun vl-defines-fix$inline (x)
      (declare (xargs :guard (vl-defines-p x)))
      (let ((__function__ 'vl-defines-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 x
               (cons (vl-define-fix (car x))
                     (vl-defines-fix (cdr x))))
             :exec x)))

    Theorem: vl-defines-p-of-vl-defines-fix

    (defthm vl-defines-p-of-vl-defines-fix
      (b* ((fty::newx (vl-defines-fix$inline x)))
        (vl-defines-p fty::newx))
      :rule-classes :rewrite)

    Theorem: vl-defines-fix-when-vl-defines-p

    (defthm vl-defines-fix-when-vl-defines-p
      (implies (vl-defines-p x)
               (equal (vl-defines-fix x) x)))

    Function: vl-defines-equiv$inline

    (defun vl-defines-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (vl-defines-p acl2::x)
                                  (vl-defines-p acl2::y))))
      (equal (vl-defines-fix acl2::x)
             (vl-defines-fix acl2::y)))

    Theorem: vl-defines-equiv-is-an-equivalence

    (defthm vl-defines-equiv-is-an-equivalence
      (and (booleanp (vl-defines-equiv x y))
           (vl-defines-equiv x x)
           (implies (vl-defines-equiv x y)
                    (vl-defines-equiv y x))
           (implies (and (vl-defines-equiv x y)
                         (vl-defines-equiv y z))
                    (vl-defines-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: vl-defines-equiv-implies-equal-vl-defines-fix-1

    (defthm vl-defines-equiv-implies-equal-vl-defines-fix-1
      (implies (vl-defines-equiv acl2::x x-equiv)
               (equal (vl-defines-fix acl2::x)
                      (vl-defines-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-defines-fix-under-vl-defines-equiv

    (defthm vl-defines-fix-under-vl-defines-equiv
      (vl-defines-equiv (vl-defines-fix acl2::x)
                        acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-vl-defines-fix-1-forward-to-vl-defines-equiv

    (defthm equal-of-vl-defines-fix-1-forward-to-vl-defines-equiv
      (implies (equal (vl-defines-fix acl2::x) acl2::y)
               (vl-defines-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-vl-defines-fix-2-forward-to-vl-defines-equiv

    (defthm equal-of-vl-defines-fix-2-forward-to-vl-defines-equiv
      (implies (equal acl2::x (vl-defines-fix acl2::y))
               (vl-defines-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-defines-equiv-of-vl-defines-fix-1-forward

    (defthm vl-defines-equiv-of-vl-defines-fix-1-forward
      (implies (vl-defines-equiv (vl-defines-fix acl2::x)
                                 acl2::y)
               (vl-defines-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-defines-equiv-of-vl-defines-fix-2-forward

    (defthm vl-defines-equiv-of-vl-defines-fix-2-forward
      (implies (vl-defines-equiv acl2::x (vl-defines-fix acl2::y))
               (vl-defines-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: car-of-vl-defines-fix-x-under-vl-define-equiv

    (defthm car-of-vl-defines-fix-x-under-vl-define-equiv
      (vl-define-equiv (car (vl-defines-fix acl2::x))
                       (car acl2::x)))

    Theorem: car-vl-defines-equiv-congruence-on-x-under-vl-define-equiv

    (defthm car-vl-defines-equiv-congruence-on-x-under-vl-define-equiv
      (implies (vl-defines-equiv acl2::x x-equiv)
               (vl-define-equiv (car acl2::x)
                                (car x-equiv)))
      :rule-classes :congruence)

    Theorem: cdr-of-vl-defines-fix-x-under-vl-defines-equiv

    (defthm cdr-of-vl-defines-fix-x-under-vl-defines-equiv
      (vl-defines-equiv (cdr (vl-defines-fix acl2::x))
                        (cdr acl2::x)))

    Theorem: cdr-vl-defines-equiv-congruence-on-x-under-vl-defines-equiv

    (defthm cdr-vl-defines-equiv-congruence-on-x-under-vl-defines-equiv
      (implies (vl-defines-equiv acl2::x x-equiv)
               (vl-defines-equiv (cdr acl2::x)
                                 (cdr x-equiv)))
      :rule-classes :congruence)

    Theorem: cons-of-vl-define-fix-x-under-vl-defines-equiv

    (defthm cons-of-vl-define-fix-x-under-vl-defines-equiv
      (vl-defines-equiv (cons (vl-define-fix acl2::x) acl2::y)
                        (cons acl2::x acl2::y)))

    Theorem: cons-vl-define-equiv-congruence-on-x-under-vl-defines-equiv

    (defthm cons-vl-define-equiv-congruence-on-x-under-vl-defines-equiv
      (implies (vl-define-equiv acl2::x x-equiv)
               (vl-defines-equiv (cons acl2::x acl2::y)
                                 (cons x-equiv acl2::y)))
      :rule-classes :congruence)

    Theorem: cons-of-vl-defines-fix-y-under-vl-defines-equiv

    (defthm cons-of-vl-defines-fix-y-under-vl-defines-equiv
      (vl-defines-equiv (cons acl2::x (vl-defines-fix acl2::y))
                        (cons acl2::x acl2::y)))

    Theorem: cons-vl-defines-equiv-congruence-on-y-under-vl-defines-equiv

    (defthm cons-vl-defines-equiv-congruence-on-y-under-vl-defines-equiv
      (implies (vl-defines-equiv acl2::y y-equiv)
               (vl-defines-equiv (cons acl2::x acl2::y)
                                 (cons acl2::x y-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-vl-defines-fix

    (defthm consp-of-vl-defines-fix
      (equal (consp (vl-defines-fix acl2::x))
             (consp acl2::x)))

    Theorem: vl-defines-fix-of-cons

    (defthm vl-defines-fix-of-cons
      (equal (vl-defines-fix (cons a x))
             (cons (vl-define-fix a)
                   (vl-defines-fix x))))

    Theorem: len-of-vl-defines-fix

    (defthm len-of-vl-defines-fix
      (equal (len (vl-defines-fix acl2::x))
             (len acl2::x)))

    Theorem: vl-defines-fix-of-append

    (defthm vl-defines-fix-of-append
      (equal (vl-defines-fix (append std::a std::b))
             (append (vl-defines-fix std::a)
                     (vl-defines-fix std::b))))

    Theorem: vl-defines-fix-of-repeat

    (defthm vl-defines-fix-of-repeat
      (equal (vl-defines-fix (repeat acl2::n acl2::x))
             (repeat acl2::n (vl-define-fix acl2::x))))

    Theorem: nth-of-vl-defines-fix

    (defthm nth-of-vl-defines-fix
      (equal (nth acl2::n (vl-defines-fix acl2::x))
             (if (< (nfix acl2::n) (len acl2::x))
                 (vl-define-fix (nth acl2::n acl2::x))
               nil)))

    Theorem: vl-defines-equiv-implies-vl-defines-equiv-append-1

    (defthm vl-defines-equiv-implies-vl-defines-equiv-append-1
      (implies (vl-defines-equiv acl2::x fty::x-equiv)
               (vl-defines-equiv (append acl2::x acl2::y)
                                 (append fty::x-equiv acl2::y)))
      :rule-classes (:congruence))

    Theorem: vl-defines-equiv-implies-vl-defines-equiv-append-2

    (defthm vl-defines-equiv-implies-vl-defines-equiv-append-2
      (implies (vl-defines-equiv acl2::y fty::y-equiv)
               (vl-defines-equiv (append acl2::x acl2::y)
                                 (append acl2::x fty::y-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-defines-equiv-implies-vl-defines-equiv-nthcdr-2

    (defthm vl-defines-equiv-implies-vl-defines-equiv-nthcdr-2
      (implies (vl-defines-equiv acl2::l l-equiv)
               (vl-defines-equiv (nthcdr acl2::n acl2::l)
                                 (nthcdr acl2::n l-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-defines-equiv-implies-vl-defines-equiv-take-2

    (defthm vl-defines-equiv-implies-vl-defines-equiv-take-2
      (implies (vl-defines-equiv acl2::l l-equiv)
               (vl-defines-equiv (take acl2::n acl2::l)
                                 (take acl2::n l-equiv)))
      :rule-classes (:congruence))