• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
        • Warnings
        • Primitives
        • Use-set
        • Syntax
        • Getting-started
        • Utilities
        • Loader
        • Transforms
          • Expression-sizing
          • Occform
          • Oprewrite
          • Expand-functions
          • Delayredux
          • Unparameterization
          • Caseelim
          • Split
          • Selresolve
          • Weirdint-elim
          • Vl-delta
          • Replicate-insts
          • Rangeresolve
          • Propagate
          • Clean-selects
          • Clean-params
          • Blankargs
          • Inline-mods
          • Expr-simp
          • Trunc
          • Always-top
            • Edgesynth
            • Stmtrewrite
            • Cblock
            • Vl-always-convert-regports
            • Vl-always-convert-regs
            • Stmttemps
            • Edgesplit
              • Vl-edgesplitstmt-p
                • Vl-edgesplitstmtlist-p
              • Vl-edgesplit-make-new-alwayses
              • Vl-modulelist-edgesplit
              • Vl-edgesplit-make-new-always
              • Vl-alwayslist-edgesplit
              • Vl-edgesplit-atomicstmt-for-lvalue
              • Vl-edgesplit-stmt-for-lvalue
              • Vl-always-edgesplit
              • Vl-edgesplitstmt-lvalues
              • Vl-edgesplit-atomicstmt-lvalues
              • Vl-module-edgesplit
              • Vl-edgesplit-atomicstmt-p
              • Vl-design-edgesplit
            • Vl-always-check-reg
            • Vl-convert-regs
            • Latchsynth
            • Vl-always-check-regs
            • Vl-match-always-at-some-edges
            • Unelse
            • Vl-always-convert-reg
            • Vl-design-always-backend
            • Vl-stmt-guts
            • Vl-always-convert-regport
            • Vl-always-scary-regs
            • Eliminitial
            • Ifmerge
            • Vl-edge-control-p
            • Elimalways
          • Gatesplit
          • Gate-elim
          • Expression-optimization
          • Elim-supplies
          • Wildelim
          • Drop-blankports
          • Clean-warnings
          • Addinstnames
          • Custom-transform-hooks
          • Annotate
          • Latchcode
          • Elim-unused-vars
          • Problem-modules
        • Lint
        • Mlib
        • Server
        • Kit
        • Printer
        • Esim-vl
        • Well-formedness
      • Sv
      • Fgl
      • Vwsim
      • Vl
      • X86isa
      • Svl
      • Rtl
    • Software-verification
    • Math
    • Testing-utilities
  • Edgesplit

Vl-edgesplitstmt-p

Recognize statements that are simple enough for us to split up.

Signature
(vl-edgesplitstmt-p x) → *
Arguments
x — Guard (vl-stmt-p x).

Since all the assignments are non-blocking, there's no dependencies between the order of the assignments and the surrounding if structures.

Theorem: vl-edgesplitstmtlist-p-of-cons

(defthm vl-edgesplitstmtlist-p-of-cons
  (equal (vl-edgesplitstmtlist-p (cons acl2::a acl2::x))
         (and (vl-edgesplitstmt-p acl2::a)
              (vl-edgesplitstmtlist-p acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-cdr-when-vl-edgesplitstmtlist-p

(defthm vl-edgesplitstmtlist-p-of-cdr-when-vl-edgesplitstmtlist-p
  (implies (vl-edgesplitstmtlist-p (double-rewrite acl2::x))
           (vl-edgesplitstmtlist-p (cdr acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-when-not-consp

(defthm vl-edgesplitstmtlist-p-when-not-consp
  (implies (not (consp acl2::x))
           (vl-edgesplitstmtlist-p acl2::x))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmt-p-of-car-when-vl-edgesplitstmtlist-p

(defthm vl-edgesplitstmt-p-of-car-when-vl-edgesplitstmtlist-p
  (implies (vl-edgesplitstmtlist-p acl2::x)
           (iff (vl-edgesplitstmt-p (car acl2::x))
                (or (consp acl2::x)
                    (vl-edgesplitstmt-p nil))))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-append

(defthm vl-edgesplitstmtlist-p-of-append
  (equal (vl-edgesplitstmtlist-p (append acl2::a acl2::b))
         (and (vl-edgesplitstmtlist-p acl2::a)
              (vl-edgesplitstmtlist-p acl2::b)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-list-fix

(defthm vl-edgesplitstmtlist-p-of-list-fix
  (equal (vl-edgesplitstmtlist-p (list-fix acl2::x))
         (vl-edgesplitstmtlist-p acl2::x))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-sfix

(defthm vl-edgesplitstmtlist-p-of-sfix
  (iff (vl-edgesplitstmtlist-p (sfix acl2::x))
       (or (vl-edgesplitstmtlist-p acl2::x)
           (not (setp acl2::x))))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-insert

(defthm vl-edgesplitstmtlist-p-of-insert
  (iff (vl-edgesplitstmtlist-p (insert acl2::a acl2::x))
       (and (vl-edgesplitstmtlist-p (sfix acl2::x))
            (vl-edgesplitstmt-p acl2::a)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-delete

(defthm vl-edgesplitstmtlist-p-of-delete
  (implies (vl-edgesplitstmtlist-p acl2::x)
           (vl-edgesplitstmtlist-p (delete acl2::k acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-mergesort

(defthm vl-edgesplitstmtlist-p-of-mergesort
  (iff (vl-edgesplitstmtlist-p (mergesort acl2::x))
       (vl-edgesplitstmtlist-p (list-fix acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-union

(defthm vl-edgesplitstmtlist-p-of-union
  (iff (vl-edgesplitstmtlist-p (union acl2::x acl2::y))
       (and (vl-edgesplitstmtlist-p (sfix acl2::x))
            (vl-edgesplitstmtlist-p (sfix acl2::y))))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-intersect-1

(defthm vl-edgesplitstmtlist-p-of-intersect-1
  (implies (vl-edgesplitstmtlist-p acl2::x)
           (vl-edgesplitstmtlist-p (intersect acl2::x acl2::y)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-intersect-2

(defthm vl-edgesplitstmtlist-p-of-intersect-2
  (implies (vl-edgesplitstmtlist-p acl2::y)
           (vl-edgesplitstmtlist-p (intersect acl2::x acl2::y)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-difference

(defthm vl-edgesplitstmtlist-p-of-difference
  (implies (vl-edgesplitstmtlist-p acl2::x)
           (vl-edgesplitstmtlist-p (difference acl2::x acl2::y)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-duplicated-members

(defthm vl-edgesplitstmtlist-p-of-duplicated-members
  (implies (vl-edgesplitstmtlist-p acl2::x)
           (vl-edgesplitstmtlist-p (duplicated-members acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-rev

(defthm vl-edgesplitstmtlist-p-of-rev
  (equal (vl-edgesplitstmtlist-p (rev acl2::x))
         (vl-edgesplitstmtlist-p (list-fix acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-rcons

(defthm vl-edgesplitstmtlist-p-of-rcons
  (iff (vl-edgesplitstmtlist-p (acl2::rcons acl2::a acl2::x))
       (and (vl-edgesplitstmt-p acl2::a)
            (vl-edgesplitstmtlist-p (list-fix acl2::x))))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmt-p-when-member-equal-of-vl-edgesplitstmtlist-p

(defthm
     vl-edgesplitstmt-p-when-member-equal-of-vl-edgesplitstmtlist-p
  (and (implies (and (member-equal acl2::a acl2::x)
                     (vl-edgesplitstmtlist-p acl2::x))
                (vl-edgesplitstmt-p acl2::a))
       (implies (and (vl-edgesplitstmtlist-p acl2::x)
                     (member-equal acl2::a acl2::x))
                (vl-edgesplitstmt-p acl2::a)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-when-subsetp-equal

(defthm vl-edgesplitstmtlist-p-when-subsetp-equal
  (and (implies (and (subsetp-equal acl2::x acl2::y)
                     (vl-edgesplitstmtlist-p acl2::y))
                (vl-edgesplitstmtlist-p acl2::x))
       (implies (and (vl-edgesplitstmtlist-p acl2::y)
                     (subsetp-equal acl2::x acl2::y))
                (vl-edgesplitstmtlist-p acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-set-equiv-congruence

(defthm vl-edgesplitstmtlist-p-set-equiv-congruence
  (implies (set-equiv acl2::x acl2::y)
           (equal (vl-edgesplitstmtlist-p acl2::x)
                  (vl-edgesplitstmtlist-p acl2::y)))
  :rule-classes :congruence)

Theorem: vl-edgesplitstmtlist-p-of-set-difference-equal

(defthm vl-edgesplitstmtlist-p-of-set-difference-equal
 (implies
    (vl-edgesplitstmtlist-p acl2::x)
    (vl-edgesplitstmtlist-p (set-difference-equal acl2::x acl2::y)))
 :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-intersection-equal-1

(defthm vl-edgesplitstmtlist-p-of-intersection-equal-1
 (implies
      (vl-edgesplitstmtlist-p (double-rewrite acl2::x))
      (vl-edgesplitstmtlist-p (intersection-equal acl2::x acl2::y)))
 :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-intersection-equal-2

(defthm vl-edgesplitstmtlist-p-of-intersection-equal-2
 (implies
      (vl-edgesplitstmtlist-p (double-rewrite acl2::y))
      (vl-edgesplitstmtlist-p (intersection-equal acl2::x acl2::y)))
 :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-union-equal

(defthm vl-edgesplitstmtlist-p-of-union-equal
  (equal (vl-edgesplitstmtlist-p (union-equal acl2::x acl2::y))
         (and (vl-edgesplitstmtlist-p (list-fix acl2::x))
              (vl-edgesplitstmtlist-p (double-rewrite acl2::y))))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-take

(defthm vl-edgesplitstmtlist-p-of-take
  (implies (vl-edgesplitstmtlist-p (double-rewrite acl2::x))
           (iff (vl-edgesplitstmtlist-p (take acl2::n acl2::x))
                (or (vl-edgesplitstmt-p nil)
                    (<= (nfix acl2::n) (len acl2::x)))))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-repeat

(defthm vl-edgesplitstmtlist-p-of-repeat
  (iff (vl-edgesplitstmtlist-p (repeat acl2::n acl2::x))
       (or (vl-edgesplitstmt-p acl2::x)
           (zp acl2::n)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmt-p-of-nth-when-vl-edgesplitstmtlist-p

(defthm vl-edgesplitstmt-p-of-nth-when-vl-edgesplitstmtlist-p
  (implies (and (vl-edgesplitstmtlist-p acl2::x)
                (< (nfix acl2::n) (len acl2::x)))
           (vl-edgesplitstmt-p (nth acl2::n acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-update-nth

(defthm vl-edgesplitstmtlist-p-of-update-nth
 (implies
  (vl-edgesplitstmtlist-p (double-rewrite acl2::x))
  (iff (vl-edgesplitstmtlist-p (update-nth acl2::n acl2::y acl2::x))
       (and (vl-edgesplitstmt-p acl2::y)
            (or (<= (nfix acl2::n) (len acl2::x))
                (vl-edgesplitstmt-p nil)))))
 :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-butlast

(defthm vl-edgesplitstmtlist-p-of-butlast
  (implies (vl-edgesplitstmtlist-p (double-rewrite acl2::x))
           (vl-edgesplitstmtlist-p (butlast acl2::x acl2::n)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-nthcdr

(defthm vl-edgesplitstmtlist-p-of-nthcdr
  (implies (vl-edgesplitstmtlist-p (double-rewrite acl2::x))
           (vl-edgesplitstmtlist-p (nthcdr acl2::n acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-last

(defthm vl-edgesplitstmtlist-p-of-last
  (implies (vl-edgesplitstmtlist-p (double-rewrite acl2::x))
           (vl-edgesplitstmtlist-p (last acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-remove

(defthm vl-edgesplitstmtlist-p-of-remove
  (implies (vl-edgesplitstmtlist-p acl2::x)
           (vl-edgesplitstmtlist-p (remove acl2::a acl2::x)))
  :rule-classes ((:rewrite)))

Theorem: vl-edgesplitstmtlist-p-of-revappend

(defthm vl-edgesplitstmtlist-p-of-revappend
  (equal (vl-edgesplitstmtlist-p (revappend acl2::x acl2::y))
         (and (vl-edgesplitstmtlist-p (list-fix acl2::x))
              (vl-edgesplitstmtlist-p acl2::y)))
  :rule-classes ((:rewrite)))

Subtopics

Vl-edgesplitstmtlist-p