• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
          • Address
          • Wire
          • Module
          • Lhs
            • Lhs.lisp
              • Lhs-vars-normorderedp
                • Lhs-norm
                • Lhatom-normorderedp
                • Lhs-normp
                • Svex-lhsrewrite-aux
                • Lhs-concat
                • Lhs-check-masks
                • Lhrange-combine
                • Svexarr-vars-aux
                • Assigns-check-masks
                • Svex->lhs-range
                • Svex-lhs-preproc-blkrev
                • Svarlist-boundedp-badguy
                • Driverlist-rest-after-strength
                • Aliases-normorderedp
                • Lhs-rsh
                • Lhs-cons
                • Svarlist-boundedp
                • Lhs-bitproj
                • Lhs-vars
                • Driver
                • Svex-override
                • Make-simple-lhs
                • Lhssvex-range-p
                • Lhs-override
                • Lhs-first-aux
                • Lhrange-combinable-dec
                • Lhrange-bitproj
                • Lhatom
                • Driverlist-values-of-strength
                • Lhs-rest-aux
                • Lhs-rest
                • Aliases-normorderedp-aux
                • Svexarr-vars
                • Lhsarr-to-svexarr
                • Svexarr-vars-witness-aux
                • Lhbit
                • Svex-lhsrewrite
                • Svar-boundedp
                • Lhs-decomp-aux
                • Svex->lhs-bound
                • Aliases-vars-aux
                • Svexarr
                • Svexarr-vars-witness
                • Svar-set-index
                • Lhsarr
                • Lhs-override-vars
                • Lhatom-eval-zero
                • Lhatom-bitproj
                • Lhrange-nextbit
                • Lhrange-combinable
                • Driverlist->svex
                • Svexlist-resolve
                • Lhs->svex-zero
                • Lhs-overridelist-vars
                • Lhs-overridelist-keys
                • Lhbit-eval
                • Driverlist-vars
                • Assigns-vars
                • Svex-int
                • Lhssvex-bounded-p
                • Lhslist-vars
                • Lhs-decomp
                • Lhatom-vars
                • Svar-map-vars
                • Lhssvex-unbounded-p
                • Lhspairs-vars
                • Lhs-width
                • Aliases-vars
                • Lhs-first
                • Svar-index
                • Assigns
                • Svar-indexedp
                • Lhspairs
                • Svex-overridelist
                • Lhslist
                • Lhs-overridelist
                • Driverlist
                • Svex-lhs-preproc
                • Svexarr-fix
                • Lhsarr-fix
              • Lhs-p
              • Lhs-fix
              • Lhrange
              • Lhs-eval-zx
              • Lhs-equiv
              • Lhs-eval
              • Lhs->svex
            • Path
            • Svar-add-namespace
            • Design
            • Modinst
            • Lhs-add-namespace
            • Modalist
            • Path-add-namespace
            • Modname->submodnames
            • Name
            • Constraintlist-addr-p
            • Svex-alist-addr-p
            • Svar-map-addr-p
            • Lhspairs-addr-p
            • Modname
            • Assigns-addr-p
            • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-list-measure
            • Attributes
            • Modhier-measure
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Lhs.lisp

    Lhs-vars-normorderedp

    Signature
    (lhs-vars-normorderedp bound offset x) → *
    Arguments
    bound — Guard (integerp bound).
    offset — Guard (natp offset).
    x — Guard (lhs-p x).

    Definitions and Theorems

    Function: lhs-vars-normorderedp

    (defun lhs-vars-normorderedp (bound offset x)
     (declare (xargs :guard (and (integerp bound)
                                 (natp offset)
                                 (lhs-p x))))
     (let ((__function__ 'lhs-vars-normorderedp))
      (declare (ignorable __function__))
      (if (atom x)
          t
       (and
          (lhatom-normorderedp bound offset (lhrange->atom (car x)))
          (lhs-vars-normorderedp bound
                                 (+ (lhrange->w (car x)) (lnfix offset))
                                 (cdr x))))))

    Theorem: lhs-vars-normorderedp-of-ifix-bound

    (defthm lhs-vars-normorderedp-of-ifix-bound
      (equal (lhs-vars-normorderedp (ifix bound)
                                    offset x)
             (lhs-vars-normorderedp bound offset x)))

    Theorem: lhs-vars-normorderedp-int-equiv-congruence-on-bound

    (defthm lhs-vars-normorderedp-int-equiv-congruence-on-bound
      (implies (int-equiv bound bound-equiv)
               (equal (lhs-vars-normorderedp bound offset x)
                      (lhs-vars-normorderedp bound-equiv offset x)))
      :rule-classes :congruence)

    Theorem: lhs-vars-normorderedp-of-nfix-offset

    (defthm lhs-vars-normorderedp-of-nfix-offset
      (equal (lhs-vars-normorderedp bound (nfix offset)
                                    x)
             (lhs-vars-normorderedp bound offset x)))

    Theorem: lhs-vars-normorderedp-nat-equiv-congruence-on-offset

    (defthm lhs-vars-normorderedp-nat-equiv-congruence-on-offset
      (implies (nat-equiv offset offset-equiv)
               (equal (lhs-vars-normorderedp bound offset x)
                      (lhs-vars-normorderedp bound offset-equiv x)))
      :rule-classes :congruence)

    Theorem: lhs-vars-normorderedp-of-lhs-fix-x

    (defthm lhs-vars-normorderedp-of-lhs-fix-x
      (equal (lhs-vars-normorderedp bound offset (lhs-fix x))
             (lhs-vars-normorderedp bound offset x)))

    Theorem: lhs-vars-normorderedp-lhs-equiv-congruence-on-x

    (defthm lhs-vars-normorderedp-lhs-equiv-congruence-on-x
      (implies (lhs-equiv x x-equiv)
               (equal (lhs-vars-normorderedp bound offset x)
                      (lhs-vars-normorderedp bound offset x-equiv)))
      :rule-classes :congruence)

    Theorem: lhs-vars-normorderedp-of-lhs-cons

    (defthm lhs-vars-normorderedp-of-lhs-cons
      (equal (lhs-vars-normorderedp bound offset (lhs-cons x y))
             (lhs-vars-normorderedp bound offset (cons x y))))

    Theorem: lhs-vars-normorderedp-of-lhs-norm-x

    (defthm lhs-vars-normorderedp-of-lhs-norm-x
      (equal (lhs-vars-normorderedp bound offset (lhs-norm x))
             (lhs-vars-normorderedp bound offset x)))

    Theorem: lhs-vars-normorderedp-lhs-norm-equiv-congruence-on-x

    (defthm lhs-vars-normorderedp-lhs-norm-equiv-congruence-on-x
      (implies (lhs-norm-equiv x x-equiv)
               (equal (lhs-vars-normorderedp bound offset x)
                      (lhs-vars-normorderedp bound offset x-equiv)))
      :rule-classes :congruence)

    Theorem: lhs-vars-normorderedp-implies-rest

    (defthm lhs-vars-normorderedp-implies-rest
      (implies (and (lhs-vars-normorderedp bound offset x)
                    (equal (nfix offset1)
                           (+ (nfix offset) (lhrange->w (car x)))))
               (lhs-vars-normorderedp bound offset1 (cdr x))))

    Theorem: lhs-vars-normorderedp-implies-rest-strict

    (defthm lhs-vars-normorderedp-implies-rest-strict
     (implies
      (and (<= (lhrange->w (car x)) (nfix offset))
           (lhs-vars-normorderedp bound
                                  (- (nfix offset) (lhrange->w (car x)))
                                  x))
      (lhs-vars-normorderedp bound offset (cdr x))))

    Theorem: lhs-vars-normorderedp-implies-atom-normorderedp-of-car

    (defthm lhs-vars-normorderedp-implies-atom-normorderedp-of-car
      (implies
           (and (lhs-vars-normorderedp bound offset x)
                (consp x))
           (lhatom-normorderedp bound offset (lhrange->atom (car x)))))

    Theorem: lhs-vars-normorderedp-implies-index-bound

    (defthm lhs-vars-normorderedp-implies-index-bound
      (implies
           (and (lhs-vars-normorderedp bound offset x)
                (consp x)
                (eq (lhatom-kind (lhrange->atom (car x)))
                    :var))
           (<= (svar-index (lhatom-var->name (lhrange->atom (car x))))
               (ifix bound)))
      :rule-classes :linear)

    Theorem: lhs-vars-normorderedp-implies-rsh-when-index-equal

    (defthm lhs-vars-normorderedp-implies-rsh-when-index-equal
     (implies
      (and
          (lhs-vars-normorderedp bound offset x)
          (consp x)
          (eq (lhatom-kind (lhrange->atom (car x)))
              :var)
          (equal (svar-index (lhatom-var->name (lhrange->atom (car x))))
                 (ifix bound)))
      (<= (lhatom-var->rsh (lhrange->atom (car x)))
          (nfix offset)))
     :rule-classes :linear)

    Theorem: lhs-vars-normorderedp-implies-lhs-bitproj-index

    (defthm lhs-vars-normorderedp-implies-lhs-bitproj-index
      (implies (and (lhs-vars-normorderedp bound offset x)
                    (eq (lhbit-kind (lhs-bitproj idx x))
                        :var))
               (svar-index (lhbit-var->name (lhs-bitproj idx x)))))

    Theorem: lhs-vars-normorderedp-implies-lhs-bitproj-index-bound

    (defthm lhs-vars-normorderedp-implies-lhs-bitproj-index-bound
      (implies (and (lhs-vars-normorderedp bound offset x)
                    (eq (lhbit-kind (lhs-bitproj idx x))
                        :var))
               (<= (svar-index (lhbit-var->name (lhs-bitproj idx x)))
                   (ifix bound)))
      :rule-classes :linear)

    Theorem: lhs-vars-normorderedp-implies-lhs-bitproj-idx-when-index-bound

    (defthm
         lhs-vars-normorderedp-implies-lhs-bitproj-idx-when-index-bound
     (implies
          (and (lhs-vars-normorderedp bound offset x)
               (eq (lhbit-kind (lhs-bitproj idx x))
                   :var)
               (equal (svar-index (lhbit-var->name (lhs-bitproj idx x)))
                      (ifix bound)))
          (<= (lhbit-var->idx (lhs-bitproj idx x))
              (+ (nfix idx) (nfix offset))))
     :rule-classes :linear)

    Theorem: lhs-vars-normorderedp-of-greater

    (defthm lhs-vars-normorderedp-of-greater
      (implies (and (lhs-vars-normorderedp bound1 offset1 x)
                    (<= (ifix bound1) (ifix bound))
                    (<= (nfix offset1) (nfix offset)))
               (lhs-vars-normorderedp bound offset x)))

    Theorem: lhs-vars-normorderedp-of-greater-bound

    (defthm lhs-vars-normorderedp-of-greater-bound
      (implies (and (lhs-vars-normorderedp bound1 offset1 x)
                    (< (ifix bound1) (ifix bound)))
               (lhs-vars-normorderedp bound offset x)))

    Theorem: lhs-vars-normorderedp-of-rsh

    (defthm lhs-vars-normorderedp-of-rsh
      (implies (and (lhs-vars-normorderedp bound offset x)
                    (<= (+ (nfix offset) (nfix sh))
                        (nfix offset1)))
               (lhs-vars-normorderedp bound offset1 (lhs-rsh sh x))))

    Theorem: lhs-vars-normorderedp-of-rsh-strict

    (defthm lhs-vars-normorderedp-of-rsh-strict
      (implies (and (<= (nfix sh) (nfix offset1))
                    (equal offset (- (nfix offset1) (nfix sh)))
                    (lhs-vars-normorderedp bound offset x))
               (lhs-vars-normorderedp bound offset1 (lhs-rsh sh x))))

    Theorem: lhs-vars-normorderedp-of-rsh-greater-bound

    (defthm lhs-vars-normorderedp-of-rsh-greater-bound
      (implies (and (lhs-vars-normorderedp bound offset x)
                    (< (ifix bound) (ifix bound1)))
               (lhs-vars-normorderedp bound1 offset1 (lhs-rsh sh x))))

    Theorem: lhs-vars-normorderedp-of-concat-strict

    (defthm lhs-vars-normorderedp-of-concat-strict
      (implies
           (and (lhs-vars-normorderedp bound offset x1)
                (lhs-vars-normorderedp bound (+ (nfix offset) (nfix w))
                                       x2))
           (lhs-vars-normorderedp bound offset (lhs-concat w x1 x2))))

    Theorem: lhs-vars-normorderedp-of-concat

    (defthm lhs-vars-normorderedp-of-concat
      (implies
           (and (lhs-vars-normorderedp bound offset x1)
                (lhs-vars-normorderedp bound offset2 x2)
                (<= (nfix offset2)
                    (+ (nfix offset) (nfix w))))
           (lhs-vars-normorderedp bound offset (lhs-concat w x1 x2))))

    Theorem: lhs-vars-normorderedp-implies-svarlist-boundedp

    (defthm lhs-vars-normorderedp-implies-svarlist-boundedp
      (implies (lhs-vars-normorderedp bound offset x)
               (svarlist-boundedp (lhs-vars x)
                                  (+ 1 (ifix bound)))))