• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
        • Svstmt
          • Svstmt-case
          • Svstmt-while
          • Svstmt-p
          • Svstmt-if
          • Svstmt-equiv
          • Svstmt-xcond
          • Svstmt-scope
          • Svstmt-assign
          • Svstmt-compile
            • Svstmt-compile.lisp
              • Svstate-merge-branches
              • Svex-alist-merge-branches
              • Svstmt-assign->subst
              • Svstack-merge-branches
              • Svstacks-compatible
              • Svjumpstate-merge-svstate-branches
              • Svjumpstate-svstate-compatible
              • Svstmt-lhs-check-masks
              • Svjumpstate
              • Svjumpstates-compatible
                • Svstmtlist-compile-top
                • Svjumpstate-sequence-svstates
                • Constraintlist-merge-branches
                • Svjumpstate-merge-branches
                • Svex-replace-range
                • Svex-svstmt-ite
                • Svstmt-process-write
                • Svjumpstate-sequence
                • Svstmt-process-writelist
                • Svstack-assign
                • Svstmt-writelist-var-sizes
                • Svstates-compatible
                • 4vec-replace-range
                • Svstmt-write-var-sizes
                • Make-empty-svjumpstate
                • Constraintlist-add-pathcond
                • Svjumpstate-pop-scope
                • Constraintlist-compose-svstack
                • Svstack-to-svex-alist
                • Svstack-filter-global-lhs-vars
                • Svjumpstate-vars
                • Svex-svstmt-or
                • Svex-svstmt-andc1
                • Svstate-push-scope
                • Svstate-pop-scope
                • Svstate-vars
                • Svstack-lookup
                • Svar-subtract-delay
                • Svstmt-initialize-locals
                • Svstack-fork
                • Svstack-clean
                • Svstack-nonempty-fix
                • Svstate-fork
                • Svstate-clean
                • Svstack-globalp
                • Svjumpstate-fork
                • Svar-delayed-member
                • Svjumpstate-levels
                • Svjumpstate-free
                • Svstate-free
                • Svstack-free
                • Svstack
                • Svar-size-alist
              • Svstate
            • Svstmt-constraints
            • Svstmt-jump
            • Svstmtlist
            • Svstmt-kind
            • Svstmt.lisp
            • Svstmt-fix
            • Svstmt-count
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Svstmt-compile.lisp

    Svjumpstates-compatible

    Signature
    (svjumpstates-compatible x y) → *
    Arguments
    x — Guard (svjumpstate-p x).
    y — Guard (svjumpstate-p y).

    Definitions and Theorems

    Function: svjumpstates-compatible

    (defun svjumpstates-compatible (x y)
      (declare (xargs :guard (and (svjumpstate-p x)
                                  (svjumpstate-p y))))
      (let ((__function__ 'svjumpstates-compatible))
        (declare (ignorable __function__))
        (b* (((svjumpstate x)) ((svjumpstate y)))
          (and (svstates-compatible x.breakst y.breakst)
               (svstates-compatible x.continuest y.continuest)
               (svstates-compatible x.returnst y.returnst)))))

    Theorem: svjumpstates-compatible-is-an-equivalence

    (defthm svjumpstates-compatible-is-an-equivalence
      (and (booleanp (svjumpstates-compatible x y))
           (svjumpstates-compatible x x)
           (implies (svjumpstates-compatible x y)
                    (svjumpstates-compatible y x))
           (implies (and (svjumpstates-compatible x y)
                         (svjumpstates-compatible y z))
                    (svjumpstates-compatible x z)))
      :rule-classes (:equivalence))

    Theorem: svjumpstates-compatible-implies-svstates-compatible-svjumpstate->breakst-1

    (defthm
     svjumpstates-compatible-implies-svstates-compatible-svjumpstate->breakst-1
     (implies (svjumpstates-compatible x x-equiv)
              (svstates-compatible (svjumpstate->breakst x)
                                   (svjumpstate->breakst x-equiv)))
     :rule-classes (:congruence))

    Theorem: svstates-compatible-implies-svjumpstates-compatible-svjumpstate-2

    (defthm
      svstates-compatible-implies-svjumpstates-compatible-svjumpstate-2
      (implies (svstates-compatible breakcond breakcond-equiv)
               (svjumpstates-compatible
                    (svjumpstate constraints
                                 breakcond breakst continuecond
                                 continuest returncond returnst)
                    (svjumpstate constraints
                                 breakcond-equiv breakst continuecond
                                 continuest returncond returnst)))
      :rule-classes (:congruence))

    Theorem: svjumpstates-compatible-implies-svstates-compatible-svjumpstate->continuest-1

    (defthm
     svjumpstates-compatible-implies-svstates-compatible-svjumpstate->continuest-1
     (implies (svjumpstates-compatible x x-equiv)
              (svstates-compatible (svjumpstate->continuest x)
                                   (svjumpstate->continuest x-equiv)))
     :rule-classes (:congruence))

    Theorem: svstates-compatible-implies-svjumpstates-compatible-svjumpstate-4

    (defthm
      svstates-compatible-implies-svjumpstates-compatible-svjumpstate-4
      (implies (svstates-compatible continuecond continuecond-equiv)
               (svjumpstates-compatible
                    (svjumpstate constraints
                                 breakcond breakst continuecond
                                 continuest returncond returnst)
                    (svjumpstate constraints
                                 breakcond breakst continuecond-equiv
                                 continuest returncond returnst)))
      :rule-classes (:congruence))

    Theorem: svjumpstates-compatible-implies-svstates-compatible-svjumpstate->returnst-1

    (defthm
     svjumpstates-compatible-implies-svstates-compatible-svjumpstate->returnst-1
     (implies (svjumpstates-compatible x x-equiv)
              (svstates-compatible (svjumpstate->returnst x)
                                   (svjumpstate->returnst x-equiv)))
     :rule-classes (:congruence))

    Theorem: svstates-compatible-implies-svjumpstates-compatible-svjumpstate-6

    (defthm
      svstates-compatible-implies-svjumpstates-compatible-svjumpstate-6
      (implies (svstates-compatible returncond returncond-equiv)
               (svjumpstates-compatible
                    (svjumpstate constraints
                                 breakcond breakst continuecond
                                 continuest returncond returnst)
                    (svjumpstate constraints
                                 breakcond breakst continuecond
                                 continuest returncond-equiv returnst)))
      :rule-classes (:congruence))

    Theorem: svjumpstates-compatible-of-svjumpstate-fix-x

    (defthm svjumpstates-compatible-of-svjumpstate-fix-x
      (equal (svjumpstates-compatible (svjumpstate-fix x)
                                      y)
             (svjumpstates-compatible x y)))

    Theorem: svjumpstates-compatible-svjumpstate-equiv-congruence-on-x

    (defthm svjumpstates-compatible-svjumpstate-equiv-congruence-on-x
      (implies (svjumpstate-equiv x x-equiv)
               (equal (svjumpstates-compatible x y)
                      (svjumpstates-compatible x-equiv y)))
      :rule-classes :congruence)

    Theorem: svjumpstates-compatible-of-svjumpstate-fix-y

    (defthm svjumpstates-compatible-of-svjumpstate-fix-y
      (equal (svjumpstates-compatible x (svjumpstate-fix y))
             (svjumpstates-compatible x y)))

    Theorem: svjumpstates-compatible-svjumpstate-equiv-congruence-on-y

    (defthm svjumpstates-compatible-svjumpstate-equiv-congruence-on-y
      (implies (svjumpstate-equiv y y-equiv)
               (equal (svjumpstates-compatible x y)
                      (svjumpstates-compatible x y-equiv)))
      :rule-classes :congruence)