• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
        • Zcash
        • ACL2-programming-language
        • Prime-fields
        • Json
        • Syntheto
          • Process-syntheto-toplevel-fn
          • Translation
          • Language
            • Static-semantics
              • Check-expression-fns
              • Subtypep
              • Match-type
              • Check-product-update-expression
              • Get-builtin-function-in/out/pre-post
              • Check-sum-update-expression
              • Check-sum-field-expression
              • Check-strict-binary-expression
              • Check-lt/le/gt/ge-expression
              • Check-eq/ne-expression
              • Check-div/rem-expression
              • Check-add/sub/mul-expression
              • Align-let-vars-values
              • Check-iff-expression
              • Check-function-definition-top/nontop
              • Check-sum-construct-expression
              • Check-rem-expression
              • Check-mul-expression
              • Check-sub-expression
              • Check-div-expression
              • Check-add-expression
              • Check-ne-expression
              • Check-lt-expression
              • Check-le-expression
              • Check-gt-expression
              • Check-ge-expression
              • Check-eq-expression
              • Check-function-specifier
              • Type-result
              • Check-product-construct-expression
              • Supremum-type
              • Check-call-expression
              • Check-product-field-expression
              • Check-function-definer
              • Make-subproof-obligations
              • Get-function-in/out/pre/post
              • Check-sum-test-expression
              • Match-field
              • Decompose-expression
                • Match-to-target
                • Check-unary-expression
                • Max-supertype
                • Match-type-list
                • Check-minus-expression
                • Check-type-definition
                • Check-not-expression
                • Check-type-product
                • Match-field-list
                • Check-type-subset
                • Check-type-definition-in-recursion
                • Align-let-vars-values-aux
                • Non-trivial-proof-obligation
                • Check-type-recursion
                • Check-function-specification
                • Check-toplevel
                • Supremum-type-list
                • Check-component-expression
                • Check-branch-list
                • Check-function-recursion
                • Check-function-definition
                • Binding
                • Check-function-header
                • Check-function-definition-list
                • Check-type-definition-list-in-recursion
                • Check-theorem
                • Check-nonstrict-binary-expression
                • Context-add-variables
                • Decompose-expression-aux
                • Check-alternative
                • Check-multi-expression
                • Check-type-sum
                • Check-type
                • Check-alternative-list
                • Context-add-condition
                • Check-type-definer
                • Check-transform
                • Check-variable
                • Check-transform-args
                • Check-toplevel-list
                • Context-add-condition-list
                • Check-if/when/unless-expression
                • Initializers-to-variable-substitution
                • Context-add-binding
                • Check-function-header-list
                • Context-add-toplevel
                • Ensure-single-type
                • Max-supertypes
                • Check-bind-expression
                • Check-type-list
                • Check-literal
                • Literal-type
                • Check-expression-list
                • Variable-context
                • Check-cond-expression
                • Check-branch
                • Args-without-defaults
                • Check-expression
                • *builtin-function-names*
                • Function-called-in
              • Abstract-syntax
              • Outcome
              • Abstract-syntax-operations
              • Outcome-list
              • Outcomes
            • Process-syntheto-toplevel
            • Shallow-embedding
          • File-io-light
          • Cryptography
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Static-semantics

    Decompose-expression

    Decompose an expression into a list of expressions of given length.

    Signature
    (decompose-expression expr n) → exprs
    Arguments
    expr — Guard (expressionp expr).
    n — Guard (posp n).
    Returns
    exprs — Type (expression-listp exprs).

    If n is 1, we return a singleton list containing the expression. Otherwise, we return a list of n expressions, each of which is a component expression consisting of the initial expression as target and the list position as index.

    The idea is that n is 1 if the expression is single-valued, greater than 1 if the expression is multi-valued. In the latter case, n should be equal to the number of components of the multiple value. Thus, the expression is decomposed into its one or more components.

    Definitions and Theorems

    Function: decompose-expression-aux

    (defun decompose-expression-aux (i n expr)
      (declare (xargs :guard (and (natp i)
                                  (natp n)
                                  (expressionp expr))))
      (let ((__function__ 'decompose-expression-aux))
        (declare (ignorable __function__))
        (b* ((i (nfix i)) (n (nfix n)))
          (if (>= i n)
              nil
            (cons (make-expression-component :multi expr
                                             :index i)
                  (decompose-expression-aux (1+ i)
                                            n expr))))))

    Theorem: expression-listp-of-decompose-expression-aux

    (defthm expression-listp-of-decompose-expression-aux
      (b* ((exprs (decompose-expression-aux i n expr)))
        (expression-listp exprs))
      :rule-classes :rewrite)

    Theorem: len-of-decompose-expression-aux

    (defthm len-of-decompose-expression-aux
      (b* ((?exprs (decompose-expression-aux i n expr)))
        (equal (len exprs)
               (nfix (- (nfix n) (nfix i))))))

    Theorem: decompose-expression-aux-of-nfix-i

    (defthm decompose-expression-aux-of-nfix-i
      (equal (decompose-expression-aux (nfix i)
                                       n expr)
             (decompose-expression-aux i n expr)))

    Theorem: decompose-expression-aux-nat-equiv-congruence-on-i

    (defthm decompose-expression-aux-nat-equiv-congruence-on-i
      (implies (nat-equiv i i-equiv)
               (equal (decompose-expression-aux i n expr)
                      (decompose-expression-aux i-equiv n expr)))
      :rule-classes :congruence)

    Theorem: decompose-expression-aux-of-nfix-n

    (defthm decompose-expression-aux-of-nfix-n
      (equal (decompose-expression-aux i (nfix n)
                                       expr)
             (decompose-expression-aux i n expr)))

    Theorem: decompose-expression-aux-nat-equiv-congruence-on-n

    (defthm decompose-expression-aux-nat-equiv-congruence-on-n
      (implies (nat-equiv n n-equiv)
               (equal (decompose-expression-aux i n expr)
                      (decompose-expression-aux i n-equiv expr)))
      :rule-classes :congruence)

    Theorem: decompose-expression-aux-of-expression-fix-expr

    (defthm decompose-expression-aux-of-expression-fix-expr
      (equal (decompose-expression-aux i n (expression-fix expr))
             (decompose-expression-aux i n expr)))

    Theorem: decompose-expression-aux-expression-equiv-congruence-on-expr

    (defthm decompose-expression-aux-expression-equiv-congruence-on-expr
      (implies (expression-equiv expr expr-equiv)
               (equal (decompose-expression-aux i n expr)
                      (decompose-expression-aux i n expr-equiv)))
      :rule-classes :congruence)

    Function: decompose-expression

    (defun decompose-expression (expr n)
      (declare (xargs :guard (and (expressionp expr) (posp n))))
      (let ((__function__ 'decompose-expression))
        (declare (ignorable __function__))
        (b* ((n (pos-fix n)))
          (if (= n 1)
              (list (expression-fix expr))
            (decompose-expression-aux 0 n expr)))))

    Theorem: expression-listp-of-decompose-expression

    (defthm expression-listp-of-decompose-expression
      (b* ((exprs (decompose-expression expr n)))
        (expression-listp exprs))
      :rule-classes :rewrite)

    Theorem: len-of-decompose-expression

    (defthm len-of-decompose-expression
      (b* ((?exprs (decompose-expression expr n)))
        (equal (len exprs) (pos-fix n))))

    Theorem: decompose-expression-of-expression-fix-expr

    (defthm decompose-expression-of-expression-fix-expr
      (equal (decompose-expression (expression-fix expr)
                                   n)
             (decompose-expression expr n)))

    Theorem: decompose-expression-expression-equiv-congruence-on-expr

    (defthm decompose-expression-expression-equiv-congruence-on-expr
      (implies (expression-equiv expr expr-equiv)
               (equal (decompose-expression expr n)
                      (decompose-expression expr-equiv n)))
      :rule-classes :congruence)

    Theorem: decompose-expression-of-pos-fix-n

    (defthm decompose-expression-of-pos-fix-n
      (equal (decompose-expression expr (pos-fix n))
             (decompose-expression expr n)))

    Theorem: decompose-expression-pos-equiv-congruence-on-n

    (defthm decompose-expression-pos-equiv-congruence-on-n
      (implies (pos-equiv n n-equiv)
               (equal (decompose-expression expr n)
                      (decompose-expression expr n-equiv)))
      :rule-classes :congruence)