• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
        • Zcash
        • ACL2-programming-language
        • Prime-fields
        • Json
        • Syntheto
        • File-io-light
        • Cryptography
          • R1cs
          • Interfaces
          • Sha-2
          • Keccak
          • Kdf
          • Mimc
          • Padding
          • Hmac
          • Elliptic-curves
            • Secp256k1-attachment
            • Twisted-edwards
            • Montgomery
            • Short-weierstrass-curves
            • Birational-montgomery-twisted-edwards
            • Has-square-root?-satisfies-pfield-squarep
            • Secp256k1
            • Secp256k1-domain-parameters
            • Secp256k1-types
            • Pfield-squarep
              • Prime-field-squares-euler-criterion
              • Pfield-odd-squarep
              • Pfield-even-squarep
                • Pfield-squarep-of-inv
              • Secp256k1-interface
              • Prime-field-extra-rules
              • Points
            • Attachments
            • Elliptic-curve-digital-signature-algorithm
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Pfield-squarep

    Pfield-even-squarep

    Check if a prime field element is a square of an even field element.

    Same as pfield-squarep except restricts the root to be even.

    Definitions and Theorems

    Theorem: pfield-even-squarep-suff

    (defthm pfield-even-squarep-suff
      (implies (and (fep r p)
                    (evenp r)
                    (equal (mul r r p) x))
               (pfield-even-squarep x p)))

    Theorem: booleanp-of-pfield-even-squarep

    (defthm booleanp-of-pfield-even-squarep
      (b* ((yes/no (pfield-even-squarep x p)))
        (booleanp yes/no))
      :rule-classes :rewrite)