• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
        • Zcash
        • ACL2-programming-language
        • Prime-fields
        • Json
        • Syntheto
        • File-io-light
        • Cryptography
          • R1cs
          • Interfaces
          • Sha-2
          • Keccak
          • Kdf
          • Mimc
          • Padding
          • Hmac
          • Elliptic-curves
            • Secp256k1-attachment
            • Twisted-edwards
            • Montgomery
              • Montgomery-mul
              • Montgomery-add
              • Montgomery-point-orderp
              • Montgomery-add-commutativity
              • Montgomery-mul-distributivity-over-scalar-addition
              • Montgomery-add-associativity
              • Birational-montgomery-twisted-edwards
              • Montgomery-curve
              • Montgomery-mul-nonneg
              • Montgomery-not-point-with-x-minus1-when-a-minus-2-over-b-not-square
              • Point-on-montgomery-p
              • Montgomery-neg
              • Montgomery-sub
              • Montgomery-add-closure
              • Montgomery-only-point-with-y-0-when-aa-minus-4-non-square
              • Montgomery-point-order-leastp
              • Montgomery-distinct-x-when-nonzero-mul-in-order-range
              • Montgomery-add-inverse-uniqueness
              • Montgomery-distributivity-of-neg-over-add
              • Montgomery-mul-associativity
                • Montgomery-points-with-same-x-have-same-or-neg-y
                • Montgomery-zero
                • Montgomery-points-with-same-x-are-same-or-neg-point
                • Montgomery-mul-of-mod-order
                • Montgomery-neg-inverse
                • Montgomery-zero-identity
                • Point-on-montgomery-finite-when-not-zero
              • Short-weierstrass-curves
              • Birational-montgomery-twisted-edwards
              • Has-square-root?-satisfies-pfield-squarep
              • Secp256k1
              • Secp256k1-domain-parameters
              • Secp256k1-types
              • Pfield-squarep
              • Secp256k1-interface
              • Prime-field-extra-rules
              • Points
            • Attachments
            • Elliptic-curve-digital-signature-algorithm
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Montgomery

    Montgomery-mul-associativity

    Associativity of scalar multiplication.

    This involves heterogeneous entities, namely two scalars and a point. Multiplying the point by one scalar and the the other is equivalent to multiplying the scalars first and then the point.

    Definitions and Theorems

    Theorem: montgomery-mul-of-mul

    (defthm montgomery-mul-of-mul
      (implies
           (and (montgomery-add-closure)
                (montgomery-add-associativity)
                (point-on-montgomery-p point curve)
                (integerp scalar)
                (integerp scalar1))
           (equal (montgomery-mul scalar
                                  (montgomery-mul scalar1 point curve)
                                  curve)
                  (montgomery-mul (* scalar scalar1)
                                  point curve))))

    Theorem: montgomery-mul-of-mul-converse

    (defthm montgomery-mul-of-mul-converse
      (implies
           (and (montgomery-add-closure)
                (montgomery-add-associativity)
                (point-on-montgomery-p point curve)
                (integerp scalar)
                (integerp scalar1))
           (equal (montgomery-mul (* scalar scalar1)
                                  point curve)
                  (montgomery-mul scalar
                                  (montgomery-mul scalar1 point curve)
                                  curve))))