• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
        • Zcash
        • ACL2-programming-language
        • Prime-fields
        • Json
        • Syntheto
        • File-io-light
        • Cryptography
          • R1cs
          • Interfaces
          • Sha-2
          • Keccak
          • Kdf
          • Mimc
          • Padding
          • Hmac
          • Elliptic-curves
            • Secp256k1-attachment
            • Twisted-edwards
            • Montgomery
              • Montgomery-mul
              • Montgomery-add
              • Montgomery-point-orderp
              • Montgomery-add-commutativity
              • Montgomery-mul-distributivity-over-scalar-addition
              • Montgomery-add-associativity
              • Birational-montgomery-twisted-edwards
              • Montgomery-curve
                • Montgomery-curve-fix
                • Montgomery-curve-equiv
                • Make-montgomery-curve
                • Montgomery-curvep
                • Change-montgomery-curve
                • Montgomery-curve->b
                • Montgomery-curve->a
                • Montgomery-curve->p
              • Montgomery-mul-nonneg
              • Montgomery-not-point-with-x-minus1-when-a-minus-2-over-b-not-square
              • Point-on-montgomery-p
              • Montgomery-neg
              • Montgomery-sub
              • Montgomery-add-closure
              • Montgomery-only-point-with-y-0-when-aa-minus-4-non-square
              • Montgomery-point-order-leastp
              • Montgomery-distinct-x-when-nonzero-mul-in-order-range
              • Montgomery-add-inverse-uniqueness
              • Montgomery-distributivity-of-neg-over-add
              • Montgomery-mul-associativity
              • Montgomery-points-with-same-x-have-same-or-neg-y
              • Montgomery-zero
              • Montgomery-points-with-same-x-are-same-or-neg-point
              • Montgomery-mul-of-mod-order
              • Montgomery-neg-inverse
              • Montgomery-zero-identity
              • Point-on-montgomery-finite-when-not-zero
            • Short-weierstrass-curves
            • Birational-montgomery-twisted-edwards
            • Has-square-root?-satisfies-pfield-squarep
            • Secp256k1
            • Secp256k1-domain-parameters
            • Secp256k1-types
            • Pfield-squarep
            • Secp256k1-interface
            • Prime-field-extra-rules
            • Points
          • Attachments
          • Elliptic-curve-digital-signature-algorithm
        • Number-theory
        • Lists-light
        • Axe
        • Builtins
        • Solidity
        • Helpers
        • Htclient
        • Typed-lists-light
        • Arithmetic-light
      • X86isa
      • Axe
      • Execloader
    • Math
    • Testing-utilities
  • Montgomery

Montgomery-curve

Fixtype of elliptic curve over prime fields in Montgomery form.

This is a product type introduced by fty::defprod.

Fields
p
a
b
Additional Requirements

The following invariant is enforced on the fields:

(and (dm::primep p) 
     (> p 2) 
     (fep a p) 
     (fep b p) 
     (not (equal a 2)) 
     (not (equal a (mod -2 p))) 
     (not (equal b 0))) 

This kind of curve is specified by the prime p and the coefficients A and B; see montgomery. Thus, we formalize a curve as a triple of these numbers, via a fixtype product.

We require p to be a prime greater than 2; see montgomery.

We require A and B to be in the prime field of p. We also require them to satisfy the condition montgomery.

To fix the three components to satisfy the requirements above, we pick 3 for p, 0 for A, and 1 for B.

Subtopics

Montgomery-curve-fix
Fixing function for montgomery-curve structures.
Montgomery-curve-equiv
Basic equivalence relation for montgomery-curve structures.
Make-montgomery-curve
Basic constructor macro for montgomery-curve structures.
Montgomery-curvep
Recognizer for montgomery-curve structures.
Change-montgomery-curve
Modifying constructor for montgomery-curve structures.
Montgomery-curve->b
Get the b field from a montgomery-curve.
Montgomery-curve->a
Get the a field from a montgomery-curve.
Montgomery-curve->p
Get the p field from a montgomery-curve.