• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
        • Zcash
        • ACL2-programming-language
        • Prime-fields
        • Json
        • Syntheto
        • File-io-light
        • Cryptography
        • Number-theory
        • Lists-light
        • Axe
        • Builtins
        • Solidity
          • Values
            • Integer-values
            • Boolean-values
              • Bool
                • Boolp
                • Bool-fix
                • Bool-equiv
                  • Make-bool
                  • Change-bool
                  • Bool->get
                • Boolean-operations
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Bool

    Bool-equiv

    Basic equivalence relation for bool structures.

    Definitions and Theorems

    Function: bool-equiv$inline

    (defun bool-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (boolp acl2::x) (boolp acl2::y))))
      (equal (bool-fix acl2::x)
             (bool-fix acl2::y)))

    Theorem: bool-equiv-is-an-equivalence

    (defthm bool-equiv-is-an-equivalence
      (and (booleanp (bool-equiv x y))
           (bool-equiv x x)
           (implies (bool-equiv x y)
                    (bool-equiv y x))
           (implies (and (bool-equiv x y) (bool-equiv y z))
                    (bool-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: bool-equiv-implies-equal-bool-fix-1

    (defthm bool-equiv-implies-equal-bool-fix-1
      (implies (bool-equiv acl2::x x-equiv)
               (equal (bool-fix acl2::x)
                      (bool-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: bool-fix-under-bool-equiv

    (defthm bool-fix-under-bool-equiv
      (bool-equiv (bool-fix acl2::x) acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-bool-fix-1-forward-to-bool-equiv

    (defthm equal-of-bool-fix-1-forward-to-bool-equiv
      (implies (equal (bool-fix acl2::x) acl2::y)
               (bool-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-bool-fix-2-forward-to-bool-equiv

    (defthm equal-of-bool-fix-2-forward-to-bool-equiv
      (implies (equal acl2::x (bool-fix acl2::y))
               (bool-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: bool-equiv-of-bool-fix-1-forward

    (defthm bool-equiv-of-bool-fix-1-forward
      (implies (bool-equiv (bool-fix acl2::x) acl2::y)
               (bool-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: bool-equiv-of-bool-fix-2-forward

    (defthm bool-equiv-of-bool-fix-2-forward
      (implies (bool-equiv acl2::x (bool-fix acl2::y))
               (bool-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)