• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
        • Zcash
        • ACL2-programming-language
        • Prime-fields
        • Json
        • Syntheto
        • File-io-light
        • Cryptography
        • Number-theory
        • Lists-light
        • Axe
        • Builtins
        • Solidity
          • Values
            • Integer-values
            • Boolean-values
              • Bool
              • Boolean-operations
                • Bool-or
                  • Bool-ne
                  • Bool-eq
                  • Bool-and
                  • Bool-not
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Boolean-operations

    Bool-or

    Logical disjunction of boolean values.

    Signature
    (bool-or left-operand right-operand) → result
    Arguments
    left-operand — Guard (boolp left-operand).
    right-operand — Guard (boolp right-operand).
    Returns
    result — Type (boolp result).

    Definitions and Theorems

    Function: bool-or

    (defun bool-or (left-operand right-operand)
      (declare (xargs :guard (and (boolp left-operand)
                                  (boolp right-operand))))
      (let ((__function__ 'bool-or))
        (declare (ignorable __function__))
        (b* ((x (bool->get left-operand))
             (y (bool->get right-operand)))
          (bool (or x y)))))

    Theorem: boolp-of-bool-or

    (defthm boolp-of-bool-or
      (b* ((result (bool-or left-operand right-operand)))
        (boolp result))
      :rule-classes :rewrite)

    Theorem: bool-or-of-bool-fix-left-operand

    (defthm bool-or-of-bool-fix-left-operand
      (equal (bool-or (bool-fix left-operand)
                      right-operand)
             (bool-or left-operand right-operand)))

    Theorem: bool-or-bool-equiv-congruence-on-left-operand

    (defthm bool-or-bool-equiv-congruence-on-left-operand
      (implies (bool-equiv left-operand left-operand-equiv)
               (equal (bool-or left-operand right-operand)
                      (bool-or left-operand-equiv right-operand)))
      :rule-classes :congruence)

    Theorem: bool-or-of-bool-fix-right-operand

    (defthm bool-or-of-bool-fix-right-operand
      (equal (bool-or left-operand (bool-fix right-operand))
             (bool-or left-operand right-operand)))

    Theorem: bool-or-bool-equiv-congruence-on-right-operand

    (defthm bool-or-bool-equiv-congruence-on-right-operand
      (implies (bool-equiv right-operand right-operand-equiv)
               (equal (bool-or left-operand right-operand)
                      (bool-or left-operand right-operand-equiv)))
      :rule-classes :congruence)