• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
          • Atj
          • Aij
          • Language
            • Syntax
              • Grammar
              • Unicode-escapes
              • Unicode-input-char
              • Escape-sequence
                • Escape-sequence-fix
                • Escape-sequence-case
                  • Escape-sequence-equiv
                  • Escape-sequence-p
                  • Escape-sequence-kind
                  • Escape-sequence-octal
                  • Escape-sequence-t
                  • Escape-sequence-single-quote
                  • Escape-sequence-r
                  • Escape-sequence-n
                  • Escape-sequence-f
                  • Escape-sequence-double-quote
                  • Escape-sequence-backslash
                  • Escape-sequence-b
                • Identifiers
                • Primitive-types
                • Reference-types
                • Keywords
                • Unicode-characters
                • Integer-literals
                • String-literals
                • Octal-digits
                • Hexadecimal-digits
                • Decimal-digits
                • Binary-digits
                • Character-literals
                • Null-literal
                • Floating-point-literals
                • Boolean-literals
                • Package-names
                • Literals
              • Semantics
          • Bitcoin
          • Ethereum
          • Yul
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Escape-sequence

    Escape-sequence-case

    Case macro for the different kinds of escape-sequence structures.

    This is an ACL2::fty sum-type case macro, typically introduced by fty::defflexsum or fty::deftagsum. It allows you to safely check the type of a escape-sequence structure, or to split into cases based on its type.

    Short Form

    In its short form, escape-sequence-case allows you to safely check the type of a escape-sequence structure. For example:

    (escape-sequence-case x :b)

    is essentially just a safer alternative to writing:

    (equal (escape-sequence-kind x) :b)

    Why is using escape-sequence-case safer? When we directly inspect the kind with equal, there is no static checking being done to ensure that, e.g., :b is a valid kind of escape-sequence structure. That means there is nothing to save you if, later, you change the kind keyword for this type from :b to something else. It also means you get no help if you just make a typo when writing the :b symbol. Over the course of developing VL, we found that such issues were very frequent sources of errors!

    Long Form

    In its longer form, escape-sequence-case allows you to split into cases based on the kind of structure you are looking at. A typical example would be:

    (escape-sequence-case x
      :b ...
      :t ...
      :n ...
      :f ...
      :r ...
      :double-quote ...
      :single-quote ...
      :backslash ...
      :octal ...)

    It is also possible to consolidate ``uninteresting'' cases using :otherwise.

    For convenience, the case macro automatically binds the fields of x for you, as appropriate for each case. That is, in the :b case, you can use fty::defprod-style foo.bar style accessors for x without having to explicitly add a b b* binder.