• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
          • Transformations
          • Language
            • Abstract-syntax
            • Dynamic-semantics
            • Concrete-syntax
            • Static-soundness
            • Static-semantics
              • Static-safety-checking
              • Static-shadowing-checking
              • Mode-set-result
              • Literal-evaluation
              • Static-identifier-checking
              • Static-safety-checking-evm
              • Mode-set
              • Modes
                • Mode
                  • Mode-case
                  • Mode-fix
                    • Mode-equiv
                    • Modep
                    • Mode-kind
                    • Mode-regular
                    • Mode-leave
                    • Mode-continue
                    • Mode-break
              • Errors
            • Yul-json
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Mode

    Mode-fix

    Fixing function for mode structures.

    Signature
    (mode-fix x) → new-x
    Arguments
    x — Guard (modep x).
    Returns
    new-x — Type (modep new-x).

    Definitions and Theorems

    Function: mode-fix$inline

    (defun mode-fix$inline (x)
      (declare (xargs :guard (modep x)))
      (let ((__function__ 'mode-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (case (mode-kind x)
               (:regular (cons :regular (list)))
               (:break (cons :break (list)))
               (:continue (cons :continue (list)))
               (:leave (cons :leave (list))))
             :exec x)))

    Theorem: modep-of-mode-fix

    (defthm modep-of-mode-fix
      (b* ((new-x (mode-fix$inline x)))
        (modep new-x))
      :rule-classes :rewrite)

    Theorem: mode-fix-when-modep

    (defthm mode-fix-when-modep
      (implies (modep x)
               (equal (mode-fix x) x)))

    Function: mode-equiv$inline

    (defun mode-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (modep acl2::x) (modep acl2::y))))
      (equal (mode-fix acl2::x)
             (mode-fix acl2::y)))

    Theorem: mode-equiv-is-an-equivalence

    (defthm mode-equiv-is-an-equivalence
      (and (booleanp (mode-equiv x y))
           (mode-equiv x x)
           (implies (mode-equiv x y)
                    (mode-equiv y x))
           (implies (and (mode-equiv x y) (mode-equiv y z))
                    (mode-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: mode-equiv-implies-equal-mode-fix-1

    (defthm mode-equiv-implies-equal-mode-fix-1
      (implies (mode-equiv acl2::x x-equiv)
               (equal (mode-fix acl2::x)
                      (mode-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: mode-fix-under-mode-equiv

    (defthm mode-fix-under-mode-equiv
      (mode-equiv (mode-fix acl2::x) acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-mode-fix-1-forward-to-mode-equiv

    (defthm equal-of-mode-fix-1-forward-to-mode-equiv
      (implies (equal (mode-fix acl2::x) acl2::y)
               (mode-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-mode-fix-2-forward-to-mode-equiv

    (defthm equal-of-mode-fix-2-forward-to-mode-equiv
      (implies (equal acl2::x (mode-fix acl2::y))
               (mode-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: mode-equiv-of-mode-fix-1-forward

    (defthm mode-equiv-of-mode-fix-1-forward
      (implies (mode-equiv (mode-fix acl2::x) acl2::y)
               (mode-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: mode-equiv-of-mode-fix-2-forward

    (defthm mode-equiv-of-mode-fix-2-forward
      (implies (mode-equiv acl2::x (mode-fix acl2::y))
               (mode-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: mode-kind$inline-of-mode-fix-x

    (defthm mode-kind$inline-of-mode-fix-x
      (equal (mode-kind$inline (mode-fix x))
             (mode-kind$inline x)))

    Theorem: mode-kind$inline-mode-equiv-congruence-on-x

    (defthm mode-kind$inline-mode-equiv-congruence-on-x
      (implies (mode-equiv x x-equiv)
               (equal (mode-kind$inline x)
                      (mode-kind$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-mode-fix

    (defthm consp-of-mode-fix
      (consp (mode-fix x))
      :rule-classes :type-prescription)