• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
          • Transformations
          • Language
            • Abstract-syntax
            • Dynamic-semantics
            • Concrete-syntax
            • Static-soundness
            • Static-semantics
              • Static-safety-checking
              • Static-shadowing-checking
              • Mode-set-result
              • Literal-evaluation
              • Static-identifier-checking
              • Static-safety-checking-evm
              • Mode-set
              • Modes
                • Mode
                  • Mode-case
                  • Mode-fix
                  • Mode-equiv
                  • Modep
                    • Mode-kind
                    • Mode-regular
                    • Mode-leave
                    • Mode-continue
                    • Mode-break
              • Errors
            • Yul-json
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Mode

    Modep

    Recognizer for mode structures.

    Signature
    (modep x) → *

    Definitions and Theorems

    Function: modep

    (defun modep (x)
      (declare (xargs :guard t))
      (let ((__function__ 'modep))
        (declare (ignorable __function__))
        (and (consp x)
             (cond ((or (atom x) (eq (car x) :regular))
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :break)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :continue)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   (t (and (eq (car x) :leave)
                           (and (true-listp (cdr x))
                                (eql (len (cdr x)) 0))
                           (b* nil t)))))))

    Theorem: consp-when-modep

    (defthm consp-when-modep
      (implies (modep x) (consp x))
      :rule-classes :compound-recognizer)