• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
        • Zcash
        • ACL2-programming-language
          • Primitive-functions
          • Translated-terms
          • Values
          • Evaluation
          • Program-equivalence
          • Functions
            • Function
            • Function-lookup
            • Function-option
            • Lift-function
            • Lift-function-list
            • Function-set
              • Function-set-fix
                • Function-setp
                • Function-set-equiv
            • Packages
            • Programs
            • Interpreter
            • Evaluation-states
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Function-set

    Function-set-fix

    (function-set-fix x) is a usual ACL2::fty set fixing function.

    Signature
    (function-set-fix x) → *
    Arguments
    x — Guard (function-setp x).

    In the logic, we apply function-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: function-set-fix

    (defun function-set-fix (x)
      (declare (xargs :guard (function-setp x)))
      (mbe :logic (if (function-setp x) x nil)
           :exec x))

    Theorem: function-setp-of-function-set-fix

    (defthm function-setp-of-function-set-fix
      (function-setp (function-set-fix x)))

    Theorem: function-set-fix-when-function-setp

    (defthm function-set-fix-when-function-setp
      (implies (function-setp x)
               (equal (function-set-fix x) x)))

    Theorem: emptyp-function-set-fix

    (defthm emptyp-function-set-fix
      (implies (or (emptyp x) (not (function-setp x)))
               (emptyp (function-set-fix x))))

    Theorem: emptyp-of-function-set-fix

    (defthm emptyp-of-function-set-fix
      (equal (emptyp (function-set-fix x))
             (or (not (function-setp x))
                 (emptyp x))))

    Function: function-set-equiv$inline

    (defun function-set-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (function-setp acl2::x)
                                  (function-setp acl2::y))))
      (equal (function-set-fix acl2::x)
             (function-set-fix acl2::y)))

    Theorem: function-set-equiv-is-an-equivalence

    (defthm function-set-equiv-is-an-equivalence
      (and (booleanp (function-set-equiv x y))
           (function-set-equiv x x)
           (implies (function-set-equiv x y)
                    (function-set-equiv y x))
           (implies (and (function-set-equiv x y)
                         (function-set-equiv y z))
                    (function-set-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: function-set-equiv-implies-equal-function-set-fix-1

    (defthm function-set-equiv-implies-equal-function-set-fix-1
      (implies (function-set-equiv acl2::x x-equiv)
               (equal (function-set-fix acl2::x)
                      (function-set-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: function-set-fix-under-function-set-equiv

    (defthm function-set-fix-under-function-set-equiv
      (function-set-equiv (function-set-fix acl2::x)
                          acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-function-set-fix-1-forward-to-function-set-equiv

    (defthm equal-of-function-set-fix-1-forward-to-function-set-equiv
      (implies (equal (function-set-fix acl2::x)
                      acl2::y)
               (function-set-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-function-set-fix-2-forward-to-function-set-equiv

    (defthm equal-of-function-set-fix-2-forward-to-function-set-equiv
      (implies (equal acl2::x (function-set-fix acl2::y))
               (function-set-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: function-set-equiv-of-function-set-fix-1-forward

    (defthm function-set-equiv-of-function-set-fix-1-forward
      (implies (function-set-equiv (function-set-fix acl2::x)
                                   acl2::y)
               (function-set-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: function-set-equiv-of-function-set-fix-2-forward

    (defthm function-set-equiv-of-function-set-fix-2-forward
      (implies (function-set-equiv acl2::x (function-set-fix acl2::y))
               (function-set-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)