• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
          • Omaps
          • Directed-untranslate
          • Include-book-paths
          • Ubi
          • Numbered-names
          • Digits-any-base
            • Defdigits
            • Nat=>lendian*
            • Group-lendian
            • Defdigit-grouping
            • Ungroup-lendian
            • Lendian=>nat
            • Defthm-dab-return-types
            • Bendian=>nat
              • Digits=>nat-exec
            • Nat=>bendian*
            • Trim-bendian*
            • Trim-lendian*
            • Nat=>lendian
            • Dab-digit-list-fix
            • Nat=>bendian
            • Ungroup-bendian
            • Group-bendian
            • Digits=>nat-injectivity-theorems
            • Dab-digit-listp
            • Nat=>lendian+
            • Dab-basep
            • Nat=>bendian+
            • Digits=>nat=>digits-inverses-theorems
            • Trim-lendian+
            • Trim-bendian+
            • Nat=>digits=>nat-inverses-theorems
            • Dab-digitp
            • Group/ungroup-inverses-theorems
            • Dab-digit-fix
            • Nat=>digits-injectivity-theorems
            • Dab-base
            • Digits-any-base-pow2
            • Dab-base-fix
          • Context-message-pair
          • With-auto-termination
          • Make-termination-theorem
          • Theorems-about-true-list-lists
          • Checkpoint-list
          • Sublis-expr+
          • Integers-from-to
          • Prove$
          • Defthm<w
          • System-utilities-non-built-in
          • Integer-range-fix
          • Minimize-ruler-extenders
          • Add-const-to-untranslate-preprocess
          • Unsigned-byte-fix
          • Signed-byte-fix
          • Defthmr
          • Paired-names
          • Unsigned-byte-list-fix
          • Signed-byte-list-fix
          • Show-books
          • Skip-in-book
          • Typed-tuplep
          • List-utilities
          • Checkpoint-list-pretty
          • Defunt
          • Keyword-value-list-to-alist
          • Magic-macroexpand
          • Top-command-number-fn
          • Bits-as-digits-in-base-2
          • Show-checkpoint-list
          • Ubyte11s-as-digits-in-base-2048
          • Named-formulas
          • Bytes-as-digits-in-base-256
          • String-utilities
          • Make-keyword-value-list-from-keys-and-value
          • Defmacroq
          • Integer-range-listp
          • Apply-fn-if-known
          • Trans-eval-error-triple
          • Checkpoint-info-list
          • Previous-subsumer-hints
          • Fms!-lst
          • Zp-listp
          • Trans-eval-state
          • Injections
          • Doublets-to-alist
          • Theorems-about-osets
          • Typed-list-utilities
          • Book-runes-alist
          • User-interface
          • Bits/ubyte11s-digit-grouping
          • Bits/bytes-digit-grouping
          • Message-utilities
          • Subsetp-eq-linear
          • Oset-utilities
          • Strict-merge-sort-<
          • Miscellaneous-enumerations
          • Maybe-unquote
          • Thm<w
          • Defthmd<w
          • Io-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
        • Ethereum
        • Yul
        • Zcash
        • ACL2-programming-language
        • Prime-fields
        • Json
        • Syntheto
        • File-io-light
        • Cryptography
        • Number-theory
        • Lists-light
        • Axe
        • Builtins
        • Solidity
        • Helpers
        • Htclient
        • Typed-lists-light
        • Arithmetic-light
      • X86isa
      • Axe
      • Execloader
    • Math
    • Testing-utilities
  • Digits-any-base

Bendian=>nat

Convert a big-endian list of digits to their value.

Signature
(bendian=>nat base digits) → nat
Arguments
base — Guard (dab-basep base).
digits — Guard (dab-digit-listp base digits).
Returns
nat — Type (natp nat).

Definitions and Theorems

Function: bendian=>nat

(defun bendian=>nat (base digits)
  (declare (xargs :guard (and (dab-basep base)
                              (dab-digit-listp base digits))))
  (let ((__function__ 'bendian=>nat))
    (declare (ignorable __function__))
    (mbe :exec (digits=>nat-exec base digits 0)
         :logic (lendian=>nat base (rev digits)))))

Theorem: natp-of-bendian=>nat

(defthm natp-of-bendian=>nat
  (b* ((nat (bendian=>nat base digits)))
    (natp nat))
  :rule-classes :rewrite)

Theorem: bendian=>nat-of-dab-digit-list-fix-digits

(defthm bendian=>nat-of-dab-digit-list-fix-digits
  (equal (bendian=>nat base (dab-digit-list-fix base digits))
         (bendian=>nat base digits)))

Theorem: bendian=>nat-of-dab-digit-list-fix-digits-normalize-const

(defthm bendian=>nat-of-dab-digit-list-fix-digits-normalize-const
 (implies (syntaxp (and (quotep digits)
                        (not (dab-digit-listp base (cadr digits)))))
          (equal (bendian=>nat base digits)
                 (bendian=>nat base
                               (dab-digit-list-fix base digits)))))

Theorem: bendian=>nat-of-true-list-fix

(defthm bendian=>nat-of-true-list-fix
  (equal (bendian=>nat base (true-list-fix digits))
         (bendian=>nat base digits)))

Theorem: bendian=>nat-of-nat-list-fix

(defthm bendian=>nat-of-nat-list-fix
  (equal (bendian=>nat base (nat-list-fix digits))
         (bendian=>nat base digits)))

Theorem: bendian=>nat-of-cons

(defthm bendian=>nat-of-cons
  (equal (bendian=>nat base (cons hidigit lodigits))
         (+ (* (dab-digit-fix base hidigit)
               (expt (dab-base-fix base)
                     (len lodigits)))
            (bendian=>nat base lodigits))))

Theorem: bendian=>nat-of-append

(defthm bendian=>nat-of-append
  (equal (bendian=>nat base (append hidigits lodigits))
         (+ (* (bendian=>nat base hidigits)
               (expt (dab-base-fix base)
                     (len lodigits)))
            (bendian=>nat base lodigits))))

Theorem: bendian=>nat-of-nil

(defthm bendian=>nat-of-nil
  (equal (bendian=>nat base nil) 0))

Theorem: bendian=>nat-of-all-zeros

(defthm bendian=>nat-of-all-zeros
  (equal (bendian=>nat base (repeat n 0))
         0))

Theorem: bendian=>nat-of-all-zeros-constant

(defthm bendian=>nat-of-all-zeros-constant
  (implies (and (syntaxp (quotep digits))
                (equal digits (repeat (len digits) 0)))
           (equal (bendian=>nat base digits) 0)))

Theorem: bendian=>nat-of-all-base-minus-1

(defthm bendian=>nat-of-all-base-minus-1
  (implies (equal digit (1- (dab-base-fix base)))
           (equal (bendian=>nat base (repeat n digit))
                  (1- (expt (dab-base-fix base) (nfix n))))))

Theorem: bendian=>nat-when-most-significant-is-0

(defthm bendian=>nat-when-most-significant-is-0
  (implies (equal (car digits) 0)
           (equal (bendian=>nat base digits)
                  (bendian=>nat base (cdr digits)))))

Theorem: lendian=>nat-as-bendian=>nat

(defthm lendian=>nat-as-bendian=>nat
  (equal (lendian=>nat base digits)
         (bendian=>nat base (rev digits))))

Theorem: lendian=>nat-of-rev

(defthm lendian=>nat-of-rev
  (equal (lendian=>nat base (rev digits))
         (bendian=>nat base digits)))

Theorem: bendian=>nat-of-rev

(defthm bendian=>nat-of-rev
  (equal (bendian=>nat base (rev digits))
         (lendian=>nat base digits)))

Theorem: bendian=>nat-of-dab-base-fix-base

(defthm bendian=>nat-of-dab-base-fix-base
  (equal (bendian=>nat (dab-base-fix base)
                       digits)
         (bendian=>nat base digits)))

Theorem: bendian=>nat-dab-base-equiv-congruence-on-base

(defthm bendian=>nat-dab-base-equiv-congruence-on-base
  (implies (dab-base-equiv base base-equiv)
           (equal (bendian=>nat base digits)
                  (bendian=>nat base-equiv digits)))
  :rule-classes :congruence)

Theorem: bendian=>nat-upper-bound

(defthm bendian=>nat-upper-bound
  (< (bendian=>nat base digits)
     (expt (dab-base-fix base) (len digits)))
  :rule-classes
  ((:linear :trigger-terms ((bendian=>nat base digits)))))

Subtopics

Digits=>nat-exec
Tail-recursive code for the execution of bendian=>nat and lendian=>nat.