• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
          • Implementation
          • Setp
          • Right
          • Left
          • Head
          • Double-containment
          • Subset
          • Intersect
          • Insert
          • In
          • Delete
          • Union
          • Diff
          • From-list
          • To-list
          • Set-equiv
            • Sfix
            • Pick-a-point
            • Cardinality
            • Set-induct
            • Set-bi-induct
            • Emptyp
          • Soft
          • C
          • Bv
          • Imp-language
          • Event-macros
          • Java
          • Bitcoin
          • Ethereum
          • Yul
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Set

    Set-equiv

    Equivalence up to sfix.

    Signature
    (set-equiv x y) → *
    Arguments
    x — Guard (setp x).
    y — Guard (setp y).

    Definitions and Theorems

    Function: set-equiv$inline

    (defun set-equiv$inline (x y)
      (declare (xargs :guard (and (setp x) (setp y))))
      (declare (xargs :type-prescription (booleanp (set-equiv x y))))
      (equal (sfix x) (sfix y)))

    Theorem: set-equiv-is-an-equivalence

    (defthm set-equiv-is-an-equivalence
      (and (booleanp (set-equiv x y))
           (set-equiv x x)
           (implies (set-equiv x y)
                    (set-equiv y x))
           (implies (and (set-equiv x y) (set-equiv y z))
                    (set-equiv x z)))
      :rule-classes (:equivalence))