• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
          • Syntax-for-tools
          • Atc
          • Language
            • Abstract-syntax
            • Integer-ranges
            • Implementation-environments
            • Dynamic-semantics
            • Static-semantics
            • Grammar
            • Integer-formats
            • Types
            • Portable-ascii-identifiers
            • Values
            • Integer-operations
            • Computation-states
              • Write-object
              • Objdesign-of-var
              • Compustate-scopes-numbers
                • Create-var
                • Read-object
                • Compustate
                • Frame
                • Enter-scope
                • Compustate-scopes-numbers-aux
                • Compustate-option
                • Push-frame
                • Exit-scope
                • Compustate-frames-number
                • Compustate-option-result
                • Scope-list-result
                • Pop-frame
                • Compustate-result
                • Scope-result
                • Compustate-top-frame-scopes-number
                • Top-frame
                • Heap
                • Scope
                • Scope-list
                • Frame-list
              • Object-designators
              • Operations
              • Errors
              • Tag-environments
              • Function-environments
              • Character-sets
              • Flexible-array-member-removal
              • Arithmetic-operations
              • Pointer-operations
              • Bytes
              • Keywords
              • Real-operations
              • Array-operations
              • Scalar-operations
              • Structure-operations
            • Representation
            • Transformation-tools
            • Insertion-sort
            • Pack
          • Bv
          • Imp-language
          • Event-macros
          • Java
          • Bitcoin
          • Ethereum
          • Yul
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Computation-states

    Compustate-scopes-numbers

    Ordered list of the numbers of scopes in the call stack frames.

    Signature
    (compustate-scopes-numbers compst) → ns
    Arguments
    compst — Guard (compustatep compst).
    Returns
    ns — Type (pos-listp ns).

    Each frame in the call stack has a number of scopes. This function returns these numbers, in the same order as the frames in the stack.

    Definitions and Theorems

    Function: compustate-scopes-numbers-aux

    (defun compustate-scopes-numbers-aux (frames)
      (declare (xargs :guard (frame-listp frames)))
      (let ((__function__ 'compustate-scopes-numbers-aux))
        (declare (ignorable __function__))
        (cond ((endp frames) nil)
              (t (cons (len (frame->scopes (car frames)))
                       (compustate-scopes-numbers-aux (cdr frames)))))))

    Theorem: pos-listp-of-compustate-scopes-numbers-aux

    (defthm pos-listp-of-compustate-scopes-numbers-aux
      (b* ((ns (compustate-scopes-numbers-aux frames)))
        (pos-listp ns))
      :rule-classes :rewrite)

    Theorem: len-of-compustate-scopes-numbers-aux

    (defthm len-of-compustate-scopes-numbers-aux
      (b* ((?ns (compustate-scopes-numbers-aux frames)))
        (equal (len ns) (len frames))))

    Theorem: consp-of-compustate-scopes-numbers-aux

    (defthm consp-of-compustate-scopes-numbers-aux
      (b* ((?ns (compustate-scopes-numbers-aux frames)))
        (equal (consp ns) (consp frames))))

    Theorem: car-of-compustate-scopes-numbers-aux

    (defthm car-of-compustate-scopes-numbers-aux
      (b* ((?ns (compustate-scopes-numbers-aux frames)))
        (implies (> (len frames) 0)
                 (equal (car ns)
                        (len (frame->scopes (car frames)))))))

    Theorem: compustate-scopes-numbers-aux-of-append

    (defthm compustate-scopes-numbers-aux-of-append
      (equal (compustate-scopes-numbers-aux (append frames1 frames2))
             (append (compustate-scopes-numbers-aux frames1)
                     (compustate-scopes-numbers-aux frames2))))

    Theorem: compustate-scopes-numbers-aux-of-rev

    (defthm compustate-scopes-numbers-aux-of-rev
      (equal (compustate-scopes-numbers-aux (rev frames))
             (rev (compustate-scopes-numbers-aux frames))))

    Theorem: compustate-scopes-numbers-aux-of-update-nth

    (defthm compustate-scopes-numbers-aux-of-update-nth
     (implies
      (< (nfix i) (len frames))
      (equal (compustate-scopes-numbers-aux (update-nth i frame frames))
             (update-nth i (len (frame->scopes frame))
                         (compustate-scopes-numbers-aux frames)))))

    Theorem: update-nth-of-nth-and-compustate-scopes-numbers-aux

    (defthm update-nth-of-nth-and-compustate-scopes-numbers-aux
     (implies
      (< (nfix i)
         (len (compustate->frames compst)))
      (equal
       (update-nth
            i
            (len (frame->scopes (nth i (compustate->frames compst))))
            (compustate-scopes-numbers-aux (compustate->frames compst)))
       (compustate-scopes-numbers-aux (compustate->frames compst)))))

    Theorem: compustate-scopes-numbers-aux-of-frame-list-fix-frames

    (defthm compustate-scopes-numbers-aux-of-frame-list-fix-frames
      (equal (compustate-scopes-numbers-aux (frame-list-fix frames))
             (compustate-scopes-numbers-aux frames)))

    Theorem: compustate-scopes-numbers-aux-frame-list-equiv-congruence-on-frames

    (defthm
     compustate-scopes-numbers-aux-frame-list-equiv-congruence-on-frames
     (implies (frame-list-equiv frames frames-equiv)
              (equal (compustate-scopes-numbers-aux frames)
                     (compustate-scopes-numbers-aux frames-equiv)))
     :rule-classes :congruence)

    Function: compustate-scopes-numbers

    (defun compustate-scopes-numbers (compst)
      (declare (xargs :guard (compustatep compst)))
      (let ((__function__ 'compustate-scopes-numbers))
        (declare (ignorable __function__))
        (compustate-scopes-numbers-aux (compustate->frames compst))))

    Theorem: pos-listp-of-compustate-scopes-numbers

    (defthm pos-listp-of-compustate-scopes-numbers
      (b* ((ns (compustate-scopes-numbers compst)))
        (pos-listp ns))
      :rule-classes :rewrite)

    Theorem: len-of-compustate-scopes-numbers

    (defthm len-of-compustate-scopes-numbers
      (b* ((?ns (compustate-scopes-numbers compst)))
        (equal (len ns)
               (len (compustate->frames compst)))))

    Theorem: consp-of-compustate-scopes-numbers

    (defthm consp-of-compustate-scopes-numbers
      (implies (> (compustate-frames-number compst) 0)
               (b* ((?ns (compustate-scopes-numbers compst)))
                 (consp ns)))
      :rule-classes :type-prescription)

    Theorem: posp-of-car-of-compustate-scopes-numbers

    (defthm posp-of-car-of-compustate-scopes-numbers
      (implies (> (compustate-frames-number compst) 0)
               (b* ((?ns (compustate-scopes-numbers compst)))
                 (posp (car ns))))
      :rule-classes :type-prescription)

    Theorem: car-of-compustate-scopes-numbers-lower-bound

    (defthm car-of-compustate-scopes-numbers-lower-bound
      (implies (> (compustate-frames-number compst) 0)
               (b* ((?ns (compustate-scopes-numbers compst)))
                 (> (car ns) 0)))
      :rule-classes :linear)

    Theorem: car-of-compustate-scopes-numbers

    (defthm car-of-compustate-scopes-numbers
     (b* ((?ns (compustate-scopes-numbers compst)))
      (implies
        (> (compustate-frames-number compst) 0)
        (equal
             (car ns)
             (len (frame->scopes (car (compustate->frames compst))))))))

    Theorem: compustate-scopes-numbers-of-push-frame

    (defthm compustate-scopes-numbers-of-push-frame
      (equal (compustate-scopes-numbers (push-frame frame compst))
             (cons (len (frame->scopes frame))
                   (compustate-scopes-numbers compst))))

    Theorem: compustate-scopes-numbers-of-pop-frame

    (defthm compustate-scopes-numbers-of-pop-frame
      (equal (compustate-scopes-numbers (pop-frame compst))
             (cdr (compustate-scopes-numbers compst))))

    Theorem: compustate-scopes-numbers-of-compustate-fix-compst

    (defthm compustate-scopes-numbers-of-compustate-fix-compst
      (equal (compustate-scopes-numbers (compustate-fix compst))
             (compustate-scopes-numbers compst)))

    Theorem: compustate-scopes-numbers-compustate-equiv-congruence-on-compst

    (defthm
        compustate-scopes-numbers-compustate-equiv-congruence-on-compst
      (implies (compustate-equiv compst compst-equiv)
               (equal (compustate-scopes-numbers compst)
                      (compustate-scopes-numbers compst-equiv)))
      :rule-classes :congruence)