• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • Soft
        • C
        • Bv
        • Imp-language
        • Event-macros
        • Java
        • Bitcoin
          • Bip32
            • Bip32-wallet-structure
            • Bip32-key-trees
            • Bip32-key-serialization
            • Bip32-key-derivation
              • Bip32-ckd-priv-pub-nh
              • Bip32-ckd-pub
                • Bip32-ckd-priv-pub
                • Bip32-ckd-priv
                • Bip32-ckd
                • Bip32-n
              • Bip32-executable-attachments
              • Bip32-extended-keys
              • Bip32-master-key-generation
            • Bech32
            • Bip39
            • Bip44
            • Base58
            • Bip43
            • Bytes
            • Base58check
            • Cryptography
            • Bip-350
            • Bip-173
          • Ethereum
          • Yul
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Lists-light
          • Axe
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Bip32-key-derivation

    Bip32-ckd-pub

    Public child key derivation from public parent key.

    Signature
    (bip32-ckd-pub parent i) → (mv error? child)
    Arguments
    parent — Guard (bip32-ext-pub-key-p parent).
    i — Guard (ubyte32p i).
    Returns
    error? — Type (booleanp error?).
    child — Type (bip32-ext-pub-key-p child).

    This is the function \mathsf{CKDpub} in [BIP32].

    The first result is t if the index is 2^{31} or more or if the key cannot be computed, as specified in [BIP32]; in these cases, the second result is irrelevant (and we just return the parent key). Otherwise, the first result is nil, meaning no error.

    We could have restricted the argument i to be below 2^{31}, but [BIP32] handles the error explicitly in the definition of the function, so we do the same here.

    Definitions and Theorems

    Function: bip32-ckd-pub

    (defun bip32-ckd-pub (parent i)
      (declare (xargs :guard (and (bip32-ext-pub-key-p parent)
                                  (ubyte32p i))))
      (b*
        (((bip32-ext-pub-key parent) parent)
         (irrelevant-child (bip32-ext-pub-key-fix parent))
         (i (mbe :logic (ubyte32-fix i) :exec i))
         ((when (>= i (expt 2 31)))
          (mv t irrelevant-child))
         (data (append (secp256k1-point-to-bytes parent.key t)
                       (nat=>bebytes 4 i)))
         (big-i (hmac-sha-512 parent.chain-code data))
         (big-i-l (take 32 big-i))
         (big-i-r (nthcdr 32 big-i))
         (parsed-big-i-l (bebytes=>nat big-i-l))
         (n (secp256k1-group-prime))
         ((when (>= parsed-big-i-l n))
          (mv t irrelevant-child))
         (child.key
              (secp256k1-add (secp256k1-mul parsed-big-i-l
                                            (secp256k1-point-generator))
                             parent.key))
         ((when (secp256k1-point-infinityp child.key))
          (mv t irrelevant-child))
         (child.chain-code big-i-r))
        (mv nil
            (bip32-ext-pub-key child.key child.chain-code))))

    Theorem: booleanp-of-bip32-ckd-pub.error?

    (defthm booleanp-of-bip32-ckd-pub.error?
      (b* (((mv ?error? ?child)
            (bip32-ckd-pub parent i)))
        (booleanp error?))
      :rule-classes :rewrite)

    Theorem: bip32-ext-pub-key-p-of-bip32-ckd-pub.child

    (defthm bip32-ext-pub-key-p-of-bip32-ckd-pub.child
      (b* (((mv ?error? ?child)
            (bip32-ckd-pub parent i)))
        (bip32-ext-pub-key-p child))
      :rule-classes :rewrite)

    Theorem: bip32-ckd-pub-of-bip32-ext-pub-key-fix-parent

    (defthm bip32-ckd-pub-of-bip32-ext-pub-key-fix-parent
      (equal (bip32-ckd-pub (bip32-ext-pub-key-fix parent)
                            i)
             (bip32-ckd-pub parent i)))

    Theorem: bip32-ckd-pub-bip32-ext-pub-key-equiv-congruence-on-parent

    (defthm bip32-ckd-pub-bip32-ext-pub-key-equiv-congruence-on-parent
      (implies (bip32-ext-pub-key-equiv parent parent-equiv)
               (equal (bip32-ckd-pub parent i)
                      (bip32-ckd-pub parent-equiv i)))
      :rule-classes :congruence)

    Theorem: bip32-ckd-pub-of-ubyte32-fix-i

    (defthm bip32-ckd-pub-of-ubyte32-fix-i
      (equal (bip32-ckd-pub parent (ubyte32-fix i))
             (bip32-ckd-pub parent i)))

    Theorem: bip32-ckd-pub-ubyte32-equiv-congruence-on-i

    (defthm bip32-ckd-pub-ubyte32-equiv-congruence-on-i
      (implies (acl2::ubyte32-equiv i i-equiv)
               (equal (bip32-ckd-pub parent i)
                      (bip32-ckd-pub parent i-equiv)))
      :rule-classes :congruence)