• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
        • Bitops
          • Bitops/merge
            • Merge-64-u8s
            • Merge-64-bits
            • Merge-32-u8s
            • Merge-32-u4s
            • Merge-32-u2s
            • Merge-32-u16s
            • Merge-32-bits
            • Merge-16-bits
            • Merge-16-u32s
            • Merge-16-u16s
            • Merge-16-u8s
            • Merge-16-u4s
            • Merge-16-u2s
            • Merge-8-bits
            • Merge-8-u2s
            • Merge-8-u64s
            • Merge-8-u4s
            • Merge-8-u32s
            • Merge-8-u16s
            • Merge-8-u8s
            • Merge-4-bits
            • Merge-4-u8s
            • Merge-4-u4s
            • Merge-4-u16s
            • Merge-4-u2s
            • Merge-4-u64s
            • Merge-4-u32s
            • Merge-4-u128s
            • Merge-2-u64s
            • Merge-2-u256s
            • Merge-2-u16s
            • Merge-2-u128s
            • Merge-2-bits
            • Merge-2-u8s
            • Merge-2-u4s
            • Merge-2-u32s
            • Merge-2-u2s
              • Merge-unsigneds
              • Merge-unsigneds-aux
              • Indexed-subst-templates
            • Bitops-compatibility
            • Bitops-books
            • Logbitp-reasoning
            • Bitops/signed-byte-p
            • Fast-part-select
            • Bitops/integer-length
            • Bitops/extra-defs
            • Install-bit
            • Trailing-0-count
            • Bitops/defaults
            • Logbitp-mismatch
            • Trailing-1-count
            • Bitops/rotate
            • Bitops/equal-by-logbitp
            • Bitops/ash-bounds
            • Bitops/fast-logrev
            • Limited-shifts
            • Bitops/part-select
            • Bitops/parity
            • Bitops/saturate
            • Bitops/part-install
            • Bitops/logbitp-bounds
            • Bitops/ihsext-basics
            • Bitops/fast-rotate
            • Bitops/fast-logext
            • Bitops/ihs-extensions
          • Bv
          • Ihs
          • Rtl
        • Algebra
      • Testing-utilities
    • Bitops/merge

    Merge-2-u2s

    Concatenate 2 2-bit numbers together to form an 4-bit result.

    Signature
    (merge-2-u2s a1 a0) → result
    Returns
    result — Type (natp result).

    Definitions and Theorems

    Function: merge-2-u2s$inline

    (defun acl2::merge-2-u2s$inline (a1 a0)
      (declare (type (unsigned-byte 2) a1 a0))
      (declare (xargs :guard t))
      (let ((__function__ 'merge-2-u2s))
        (declare (ignorable __function__))
        (mbe :logic (logapp* 2 (nfix a0) (nfix a1) 0)
             :exec
             (b* ((ans a0))
               (the (unsigned-byte 4)
                    (logior (the (unsigned-byte 4) (ash a1 (* 1 2)))
                            (the (unsigned-byte 4) ans)))))))

    Theorem: natp-of-merge-2-u2s

    (defthm acl2::natp-of-merge-2-u2s
      (b* ((result (acl2::merge-2-u2s$inline a1 a0)))
        (natp result))
      :rule-classes :type-prescription)

    Theorem: unsigned-byte-p-4-of-merge-2-u2s

    (defthm unsigned-byte-p-4-of-merge-2-u2s
      (unsigned-byte-p 4 (merge-2-u2s a1 a0))
      :rule-classes
      ((:rewrite
            :corollary (implies (>= (nfix n) 4)
                                (unsigned-byte-p n (merge-2-u2s a1 a0)))
            :hints (("Goal" :in-theory (disable unsigned-byte-p))))))

    Theorem: merge-2-u2s-is-merge-unsigneds

    (defthm merge-2-u2s-is-merge-unsigneds
      (equal (merge-2-u2s a1 a0)
             (merge-unsigneds 2 (list (nfix a1) (nfix a0)))))
    Basic nat-equiv congruences.

    Theorem: nat-equiv-implies-equal-merge-2-u2s-2

    (defthm nat-equiv-implies-equal-merge-2-u2s-2
      (implies (nat-equiv a0 a0-equiv)
               (equal (merge-2-u2s a1 a0)
                      (merge-2-u2s a1 a0-equiv)))
      :rule-classes (:congruence))

    Theorem: nat-equiv-implies-equal-merge-2-u2s-1

    (defthm nat-equiv-implies-equal-merge-2-u2s-1
      (implies (nat-equiv a1 a1-equiv)
               (equal (merge-2-u2s a1 a0)
                      (merge-2-u2s a1-equiv a0)))
      :rule-classes (:congruence))