• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
        • Bitops
        • Bv
        • Ihs
          • Logops-definitions
            • Logops-byte-functions
            • Defword
            • Defbytetype
            • Logext
            • Logrev
            • Loghead
            • Logops-bit-functions
            • Logtail
            • Logapp
            • Logsat
            • Binary--
            • Logcdr
              • Logcdr-default
              • Logcdr-basics
              • Logcar
              • Logbit
              • Logextu
              • Logcons
              • Lshu
              • Logrpl
              • Ashu
              • Logmaskp
              • Lognotu
              • Logmask
              • Imod
              • Ifloor
              • Bfix
              • Bitmaskp
              • Logite
              • Expt2
              • Zbp
              • *logops-functions*
              • Word/bit-macros
              • Logops-definitions-theory
              • Logops-functions
              • Lbfix
              • Logextu-guard
              • Lshu-guard
              • Logtail-guard
              • Logrpl-guard
              • Logrev-guard
              • Lognotu-guard
              • Logmask-guard
              • Loghead-guard
              • Logext-guard
              • Logbit-guard
              • Logapp-guard
              • Ashu-guard
            • Math-lemmas
            • Ihs-theories
            • Ihs-init
            • Logops
          • Rtl
        • Algebra
      • Testing-utilities
    • Logcdr

    Logcdr-basics

    Definitions and Theorems

    Theorem: logcdr-<-0

    (defthm logcdr-<-0
      (equal (< (logcdr i) 0)
             (and (integerp i) (< i 0))))

    Theorem: justify-logcdr-induction

    (defthm justify-logcdr-induction
      (and (implies (> i 0) (< (logcdr i) i))
           (implies (< i -1) (< i (logcdr i)))))