• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
        • Bitops
          • Bitops/merge
          • Bitops-compatibility
          • Bitops-books
          • Logbitp-reasoning
          • Bitops/signed-byte-p
          • Fast-part-select
          • Bitops/integer-length
          • Bitops/extra-defs
          • Install-bit
          • Trailing-0-count
          • Bitops/defaults
          • Logbitp-mismatch
          • Trailing-1-count
            • Bitops/rotate
            • Bitops/equal-by-logbitp
            • Bitops/ash-bounds
            • Bitops/fast-logrev
            • Limited-shifts
            • Bitops/part-select
            • Bitops/parity
            • Bitops/saturate
            • Bitops/part-install
            • Bitops/logbitp-bounds
            • Bitops/ihsext-basics
            • Bitops/fast-rotate
            • Bitops/fast-logext
            • Bitops/ihs-extensions
          • Bv
          • Ihs
          • Rtl
        • Algebra
      • Testing-utilities
    • Bitops

    Trailing-1-count

    Optimized trailing 0 count for integers.

    Signature
    (trailing-1-count x) → *
    Arguments
    x — Guard (integerp x).

    To make this fast, be sure and include the "std/bitsets/bignum-extract-opt" book (reqires a ttag), which prevents this (at least on CCL64) from needing to create new bignums when run on bignums.

    Definitions and Theorems

    Function: trailing-1-count

    (defun trailing-1-count (x)
      (declare (xargs :guard (integerp x)))
      (let ((__function__ 'trailing-1-count))
        (declare (ignorable __function__))
        (mbe :logic
             (if (or (eql x -1) (not (logbitp 0 x)))
                 0
               (+ 1 (trailing-1-count (logcdr x))))
             :exec
             (if (eql -1 x)
                 0
               (trailing-1-count-rec x 0)))))

    Theorem: trailing-1-count-is-trailing-0-count-of-lognot

    (defthm trailing-1-count-is-trailing-0-count-of-lognot
      (equal (trailing-1-count x)
             (trailing-0-count (lognot x))))