• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
        • Bitops
        • Bv
        • Ihs
          • Logops-definitions
            • Logops-byte-functions
            • Defword
            • Defbytetype
            • Logext
            • Logrev
            • Loghead
            • Logops-bit-functions
            • Logtail
            • Logapp
            • Logsat
            • Binary--
            • Logcdr
            • Logcar
            • Logbit
            • Logextu
            • Logcons
            • Lshu
            • Logrpl
            • Ashu
            • Logmaskp
            • Lognotu
            • Logmask
            • Imod
            • Ifloor
            • Bfix
              • Bitmaskp
              • Logite
              • Expt2
              • Zbp
              • *logops-functions*
              • Word/bit-macros
              • Logops-definitions-theory
              • Logops-functions
              • Lbfix
              • Logextu-guard
              • Lshu-guard
              • Logtail-guard
              • Logrpl-guard
              • Logrev-guard
              • Lognotu-guard
              • Logmask-guard
              • Loghead-guard
              • Logext-guard
              • Logbit-guard
              • Logapp-guard
              • Ashu-guard
            • Math-lemmas
            • Ihs-theories
            • Ihs-init
            • Logops
          • Rtl
        • Algebra
      • Testing-utilities
    • Std/basic
    • Logops-definitions
    • Bitp

    Bfix

    Bit fix. (bfix b) is a fixing function for bitps. It coerces any object to a bit (0 or 1) by coercing non-1 objects to 0.

    See also lbfix.

    Definitions and Theorems

    Function: bfix$inline

    (defun bfix$inline (b)
      (declare (xargs :guard t))
      (if (eql b 1) 1 0))

    Theorem: bitp-bfix

    (defthm bitp-bfix (bitp (bfix b)))

    Theorem: bfix-bitp

    (defthm bfix-bitp
      (implies (bitp b) (equal (bfix b) b)))