• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
          • Gatesimp
            • Gatesimp-p
            • !gatesimp->xor-mode
            • !gatesimp->level
              • !gatesimp->hashp
              • Gatesimp-fix
              • Gatesimp->xor-mode
              • Gatesimp->level
              • Gatesimp->hashp
            • Aignet-hash-mux
            • Aignet-hash-xor
            • Aignet-hash-and
            • Aignet-hash-or
            • Aignet-hash-iff
            • Aignet-build
            • Patbind-aignet-build
          • Representation
          • Aignet-copy-init
          • Aignet-simplify-with-tracking
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-marked
          • Aignet-complete-copy
          • Aignet-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Gatesimp

    !gatesimp->level

    Update the |AIGNET|::|LEVEL| field of a gatesimp bit structure.

    Signature
    (!gatesimp->level level x) → new-x
    Arguments
    level — Guard (gatesimp-level-p level).
    x — Guard (gatesimp-p x).
    Returns
    new-x — Type (gatesimp-p new-x).

    Definitions and Theorems

    Function: !gatesimp->level

    (defun !gatesimp->level (level x)
      (declare (xargs :guard (and (gatesimp-level-p level)
                                  (gatesimp-p x))))
      (mbe :logic
           (b* ((level (mbe :logic (gatesimp-level-fix level)
                            :exec level))
                (x (gatesimp-fix x)))
             (part-install level x :width 3 :low 1))
           :exec (the (unsigned-byte 6)
                      (logior (the (unsigned-byte 6)
                                   (logand (the (unsigned-byte 6) x)
                                           (the (signed-byte 5) -15)))
                              (the (unsigned-byte 4)
                                   (ash (the (unsigned-byte 3) level)
                                        1))))))

    Theorem: gatesimp-p-of-!gatesimp->level

    (defthm gatesimp-p-of-!gatesimp->level
      (b* ((new-x (!gatesimp->level level x)))
        (gatesimp-p new-x))
      :rule-classes :rewrite)

    Theorem: !gatesimp->level-of-gatesimp-level-fix-level

    (defthm !gatesimp->level-of-gatesimp-level-fix-level
      (equal (!gatesimp->level (gatesimp-level-fix level)
                               x)
             (!gatesimp->level level x)))

    Theorem: !gatesimp->level-gatesimp-level-equiv-congruence-on-level

    (defthm !gatesimp->level-gatesimp-level-equiv-congruence-on-level
      (implies (gatesimp-level-equiv level level-equiv)
               (equal (!gatesimp->level level x)
                      (!gatesimp->level level-equiv x)))
      :rule-classes :congruence)

    Theorem: !gatesimp->level-of-gatesimp-fix-x

    (defthm !gatesimp->level-of-gatesimp-fix-x
      (equal (!gatesimp->level level (gatesimp-fix x))
             (!gatesimp->level level x)))

    Theorem: !gatesimp->level-gatesimp-equiv-congruence-on-x

    (defthm !gatesimp->level-gatesimp-equiv-congruence-on-x
      (implies (gatesimp-equiv x x-equiv)
               (equal (!gatesimp->level level x)
                      (!gatesimp->level level x-equiv)))
      :rule-classes :congruence)

    Theorem: !gatesimp->level-is-gatesimp

    (defthm !gatesimp->level-is-gatesimp
      (equal (!gatesimp->level level x)
             (change-gatesimp x :level level)))

    Theorem: gatesimp->level-of-!gatesimp->level

    (defthm gatesimp->level-of-!gatesimp->level
      (b* ((?new-x (!gatesimp->level level x)))
        (equal (gatesimp->level new-x)
               (gatesimp-level-fix level))))

    Theorem: !gatesimp->level-equiv-under-mask

    (defthm !gatesimp->level-equiv-under-mask
      (b* ((?new-x (!gatesimp->level level x)))
        (gatesimp-equiv-under-mask new-x x -15)))