• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
            • Node-fix
            • Node-p
            • Node-equiv
            • Co-node->fanin
            • Gate-node->fanin1
            • Gate-node->fanin0
            • Stype
            • Nxst-node
            • Node->type
            • Node->regp
              • Xor-node
              • And-node
              • Po-node
              • Proper-node-p
              • Reg-node
              • Pi-node
              • Const-node
            • Network
            • Combinational-type
            • Typecode
            • Stypep
          • Aignet-copy-init
          • Aignet-simplify-with-tracking
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-marked
          • Aignet-complete-copy
          • Aignet-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Node

    Node->regp

    Get the regp/xorp bit of a node's encoding -- 1 if it is a :reg, :nxst, or :xor node. Note: returns a bitp.

    Signature
    (node->regp node) → bit
    Arguments
    node — Guard (node-p node).
    Returns
    bit — Type (bitp bit).

    Definitions and Theorems

    Function: node->regp

    (defun node->regp (node)
      (declare (xargs :guard (node-p node)))
      (let ((__function__ 'node->regp))
        (declare (ignorable __function__))
        (regp (stype node))))

    Theorem: bitp-of-node->regp

    (defthm bitp-of-node->regp
      (b* ((bit (node->regp node)))
        (bitp bit))
      :rule-classes :rewrite)

    Theorem: node->regp-of-node-fix-node

    (defthm node->regp-of-node-fix-node
      (equal (node->regp (node-fix node))
             (node->regp node)))

    Theorem: node->regp-node-equiv-congruence-on-node

    (defthm node->regp-node-equiv-congruence-on-node
      (implies (node-equiv node node-equiv)
               (equal (node->regp node)
                      (node->regp node-equiv)))
      :rule-classes :congruence)