• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
        • Faig-constructors
        • Faig-onoff-equiv
        • Faig-purebool-p
        • Faig-alist-equiv
        • Faig-equiv
          • Faig-equiv-thms
        • Faig-eval
        • Faig-restrict
        • Faig-fix
        • Faig-partial-eval
        • Faig-compose
        • Faig-compose-alist
        • Patbind-faig
        • Faig-constants
      • Bed
      • 4v
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
    • Testing-utilities
  • Faig

Faig-equiv

We say the FAIGs X and Y are equivalent when they always evaluate to the same value, per faig-eval.

This is a universal equivalence, introduced using def-universal-equiv.

Function: faig-equiv

(defun faig-equiv (x y)
  (declare (xargs :non-executable t))
  (declare (xargs :guard t))
  (prog2$ (throw-nonexec-error 'faig-equiv
                               (list x y))
          (let ((env (faig-equiv-witness x y)))
            (and (equal (faig-eval x env)
                        (faig-eval y env))))))

Definitions and Theorems

Theorem: faig-equiv-necc

(defthm faig-equiv-necc
  (implies (not (and (equal (faig-eval x env)
                            (faig-eval y env))))
           (not (faig-equiv x y))))

Theorem: faig-equiv-witnessing-witness-rule-correct

(defthm faig-equiv-witnessing-witness-rule-correct
  (implies (not ((lambda (env y x)
                   (not (equal (faig-eval x env)
                               (faig-eval y env))))
                 (faig-equiv-witness x y)
                 y x))
           (faig-equiv x y))
  :rule-classes nil)

Theorem: faig-equiv-instancing-instance-rule-correct

(defthm faig-equiv-instancing-instance-rule-correct
  (implies (not (equal (faig-eval x env)
                       (faig-eval y env)))
           (not (faig-equiv x y)))
  :rule-classes nil)

Theorem: faig-equiv-is-an-equivalence

(defthm faig-equiv-is-an-equivalence
  (and (booleanp (faig-equiv x y))
       (faig-equiv x x)
       (implies (faig-equiv x y)
                (faig-equiv y x))
       (implies (and (faig-equiv x y) (faig-equiv y z))
                (faig-equiv x z)))
  :rule-classes (:equivalence))

Subtopics

Faig-equiv-thms
Basic theorems about faig-equiv.