• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
        • Faig-constructors
          • T-aig-ite*
          • F-aig-ite*
          • T-aig-ite
          • F-aig-ite
          • T-aig-tristate
          • F-aig-zif
          • T-aig-xor
          • T-aig-or
          • T-aig-iff
          • T-aig-and
          • F-aig-and
          • F-aig-xor
          • F-aig-or
          • F-aig-iff
          • F-aig-res
          • F-aig-unfloat
          • T-aig-not
            • F-aig-pullup
            • F-aig-not
            • T-aig-xdet
            • F-aig-xdet
          • Faig-onoff-equiv
          • Faig-purebool-p
          • Faig-alist-equiv
          • Faig-equiv
          • Faig-eval
          • Faig-restrict
          • Faig-fix
          • Faig-partial-eval
          • Faig-compose
          • Faig-compose-alist
          • Patbind-faig
          • Faig-constants
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Faig-constructors

    T-aig-not

    (t-aig-not a) negates the FAIG a, assuming that it cannot evaluate to Z.

    Signature
    (t-aig-not a) → *

    Definitions and Theorems

    Function: t-aig-not$inline

    (defun t-aig-not$inline (a)
      (declare (xargs :guard t))
      (let ((__function__ 't-aig-not))
        (declare (ignorable __function__))
        (b* (((faig a1 a0) a)) (cons a0 a1))))

    Theorem: faig-eval-of-t-aig-not

    (defthm faig-eval-of-t-aig-not
      (equal (faig-eval (t-aig-not a) env)
             (t-aig-not (faig-eval a env))))

    Theorem: faig-fix-equiv-implies-equal-t-aig-not-1

    (defthm faig-fix-equiv-implies-equal-t-aig-not-1
      (implies (faig-fix-equiv a a-equiv)
               (equal (t-aig-not a)
                      (t-aig-not a-equiv)))
      :rule-classes (:congruence))

    Theorem: faig-equiv-implies-faig-equiv-t-aig-not-1

    (defthm faig-equiv-implies-faig-equiv-t-aig-not-1
      (implies (faig-equiv a a-equiv)
               (faig-equiv (t-aig-not a)
                           (t-aig-not a-equiv)))
      :rule-classes (:congruence))