• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
        • Faig-constructors
          • T-aig-ite*
          • F-aig-ite*
          • T-aig-ite
          • F-aig-ite
          • T-aig-tristate
          • F-aig-zif
          • T-aig-xor
          • T-aig-or
          • T-aig-iff
          • T-aig-and
          • F-aig-and
          • F-aig-xor
          • F-aig-or
          • F-aig-iff
          • F-aig-res
          • F-aig-unfloat
          • T-aig-not
          • F-aig-pullup
          • F-aig-not
            • T-aig-xdet
            • F-aig-xdet
          • Faig-onoff-equiv
          • Faig-purebool-p
          • Faig-alist-equiv
          • Faig-equiv
          • Faig-eval
          • Faig-restrict
          • Faig-fix
          • Faig-partial-eval
          • Faig-compose
          • Faig-compose-alist
          • Patbind-faig
          • Faig-constants
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Faig-constructors

    F-aig-not

    (f-aig-not a) negates the FAIG a.

    Signature
    (f-aig-not a) → *

    Definitions and Theorems

    Function: f-aig-not

    (defun f-aig-not (a)
      (declare (xargs :guard t))
      (let ((__function__ 'f-aig-not))
        (declare (ignorable __function__))
        (b* (((faig a1 a0) a))
          (cons (aig-not (aig-and a1 (aig-not a0)))
                (aig-not (aig-and a0 (aig-not a1)))))))

    Theorem: faig-eval-of-f-aig-not

    (defthm faig-eval-of-f-aig-not
      (equal (faig-eval (f-aig-not a) env)
             (f-aig-not (faig-eval a env))))

    Theorem: faig-fix-equiv-implies-equal-f-aig-not-1

    (defthm faig-fix-equiv-implies-equal-f-aig-not-1
      (implies (faig-fix-equiv a a-equiv)
               (equal (f-aig-not a)
                      (f-aig-not a-equiv)))
      :rule-classes (:congruence))

    Theorem: faig-equiv-implies-faig-equiv-f-aig-not-1

    (defthm faig-equiv-implies-faig-equiv-f-aig-not-1
      (implies (faig-equiv a a-equiv)
               (faig-equiv (f-aig-not a)
                           (f-aig-not a-equiv)))
      :rule-classes (:congruence))