• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
      • B*
      • Defunc
      • Fty
        • Deftagsum
        • Defprod
        • Defflexsum
        • Defbitstruct
        • Deflist
        • Defalist
        • Defbyte
        • Deffixequiv
        • Defresult
        • Deffixtype
        • Defoption
        • Fty-discipline
        • Fold
        • Fty-extensions
          • Defbyte
          • Defresult
          • Fold
          • Defsubtype
          • Defset
          • Specific-types
          • Defflatsum
          • Deflist-of-len
          • Pos-list
          • Defbytelist
          • Defomap
          • Defbyte-standard-instances
          • Deffixtype-alias
          • Defbytelist-standard-instances
          • Defunit
          • Byte-list
          • Byte
          • Database
          • Pos-option
          • Nibble
          • Nat-option
          • String-option
          • Byte-list20
          • Byte-list32
          • Byte-list64
          • Pseudo-event-form
          • Natoption/natoptionlist
          • Nati
            • Nati-case
            • Nati-fix
              • Nati-equiv
              • Natip
              • Nati-finite
              • Nati-infinity
              • Nati-kind
            • Character-list
            • Nat/natlist
            • Maybe-string
            • Nibble-list
            • Natoption/natoptionlist-result
            • Nat/natlist-result
            • Nat-option-list-result
            • Set
            • String-result
            • String-list-result
            • Nat-result
            • Nat-option-result
            • Nat-list-result
            • Maybe-string-result
            • Integer-result
            • Character-result
            • Character-list-result
            • Boolean-result
            • Map
            • Bag
            • Pos-set
            • Hex-digit-char-list
            • Dec-digit-char-list
            • Pseudo-event-form-list
            • Nat-option-list
            • Symbol-set
            • String-set
            • Nat-set
            • Oct-digit-char-list
            • Bin-digit-char-list
            • Bit-list
          • Defsubtype
          • Defset
          • Deftypes
          • Specific-types
          • Defflatsum
          • Deflist-of-len
          • Defbytelist
          • Fty::basetypes
          • Defomap
          • Defvisitors
          • Deffixtype-alias
          • Deffixequiv-sk
          • Defunit
          • Multicase
          • Deffixequiv-mutual
          • Fty::baselists
          • Def-enumcase
          • Defmap
        • Apt
        • Std/util
        • Defdata
        • Defrstobj
        • Seq
        • Match-tree
        • Defrstobj
        • With-supporters
        • Def-partial-measure
        • Template-subst
        • Soft
        • Defthm-domain
        • Event-macros
        • Def-universal-equiv
        • Def-saved-obligs
        • With-supporters-after
        • Definec
        • Sig
        • Outer-local
        • Data-structures
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Nati

    Nati-fix

    Fixing function for nati structures.

    Signature
    (nati-fix x) → new-x
    Arguments
    x — Guard (natip x).
    Returns
    new-x — Type (natip new-x).

    Definitions and Theorems

    Function: nati-fix$inline

    (defun nati-fix$inline (x)
      (declare (xargs :guard (natip x)))
      (let ((__function__ 'nati-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (case (nati-kind x)
               (:finite (b* ((get (nfix (std::da-nth 0 (cdr x)))))
                          (cons :finite (list get))))
               (:infinity (cons :infinity (list))))
             :exec x)))

    Theorem: natip-of-nati-fix

    (defthm natip-of-nati-fix
      (b* ((new-x (nati-fix$inline x)))
        (natip new-x))
      :rule-classes :rewrite)

    Theorem: nati-fix-when-natip

    (defthm nati-fix-when-natip
      (implies (natip x)
               (equal (nati-fix x) x)))

    Function: nati-equiv$inline

    (defun nati-equiv$inline (x y)
      (declare (xargs :guard (and (natip x) (natip y))))
      (equal (nati-fix x) (nati-fix y)))

    Theorem: nati-equiv-is-an-equivalence

    (defthm nati-equiv-is-an-equivalence
      (and (booleanp (nati-equiv x y))
           (nati-equiv x x)
           (implies (nati-equiv x y)
                    (nati-equiv y x))
           (implies (and (nati-equiv x y) (nati-equiv y z))
                    (nati-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: nati-equiv-implies-equal-nati-fix-1

    (defthm nati-equiv-implies-equal-nati-fix-1
      (implies (nati-equiv x x-equiv)
               (equal (nati-fix x) (nati-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: nati-fix-under-nati-equiv

    (defthm nati-fix-under-nati-equiv
      (nati-equiv (nati-fix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-nati-fix-1-forward-to-nati-equiv

    (defthm equal-of-nati-fix-1-forward-to-nati-equiv
      (implies (equal (nati-fix x) y)
               (nati-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-nati-fix-2-forward-to-nati-equiv

    (defthm equal-of-nati-fix-2-forward-to-nati-equiv
      (implies (equal x (nati-fix y))
               (nati-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: nati-equiv-of-nati-fix-1-forward

    (defthm nati-equiv-of-nati-fix-1-forward
      (implies (nati-equiv (nati-fix x) y)
               (nati-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: nati-equiv-of-nati-fix-2-forward

    (defthm nati-equiv-of-nati-fix-2-forward
      (implies (nati-equiv x (nati-fix y))
               (nati-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: nati-kind$inline-of-nati-fix-x

    (defthm nati-kind$inline-of-nati-fix-x
      (equal (nati-kind$inline (nati-fix x))
             (nati-kind$inline x)))

    Theorem: nati-kind$inline-nati-equiv-congruence-on-x

    (defthm nati-kind$inline-nati-equiv-congruence-on-x
      (implies (nati-equiv x x-equiv)
               (equal (nati-kind$inline x)
                      (nati-kind$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-nati-fix

    (defthm consp-of-nati-fix
      (consp (nati-fix x))
      :rule-classes :type-prescription)