• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
      • B*
      • Defunc
      • Fty
        • Deftagsum
        • Defprod
        • Defflexsum
        • Defbitstruct
        • Deflist
        • Defalist
        • Defbyte
        • Deffixequiv
        • Defresult
        • Deffixtype
        • Defoption
        • Fty-discipline
        • Fold
        • Fty-extensions
          • Defbyte
          • Defresult
          • Fold
          • Defsubtype
          • Defset
          • Specific-types
          • Defflatsum
          • Deflist-of-len
          • Pos-list
          • Defbytelist
          • Defomap
          • Defbyte-standard-instances
          • Deffixtype-alias
          • Defbytelist-standard-instances
          • Defunit
          • Byte-list
          • Byte
          • Database
          • Pos-option
          • Nibble
          • Nat-option
          • String-option
          • Byte-list20
          • Byte-list32
          • Byte-list64
          • Pseudo-event-form
          • Natoption/natoptionlist
          • Nati
          • Character-list
          • Nat/natlist
          • Maybe-string
          • Nibble-list
          • Natoption/natoptionlist-result
          • Nat/natlist-result
          • Nat-option-list-result
          • Set
            • String-result
            • String-list-result
            • Nat-result
            • Nat-option-result
            • Nat-list-result
            • Maybe-string-result
            • Integer-result
            • Character-result
            • Character-list-result
            • Boolean-result
            • Map
            • Bag
            • Pos-set
            • Hex-digit-char-list
            • Dec-digit-char-list
            • Pseudo-event-form-list
            • Nat-option-list
            • Symbol-set
            • String-set
            • Nat-set
            • Oct-digit-char-list
            • Bin-digit-char-list
            • Bit-list
          • Defsubtype
          • Defset
          • Deftypes
          • Specific-types
          • Defflatsum
          • Deflist-of-len
          • Defbytelist
          • Fty::basetypes
          • Defomap
          • Defvisitors
          • Deffixtype-alias
          • Deffixequiv-sk
          • Defunit
          • Multicase
          • Deffixequiv-mutual
          • Fty::baselists
          • Def-enumcase
          • Defmap
        • Apt
        • Std/util
        • Defdata
        • Defrstobj
        • Seq
        • Match-tree
        • Defrstobj
        • With-supporters
        • Def-partial-measure
        • Template-subst
        • Soft
        • Defthm-domain
        • Event-macros
        • Def-universal-equiv
        • Def-saved-obligs
        • With-supporters-after
        • Definec
        • Sig
        • Outer-local
        • Data-structures
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Fty-extensions
    • Specific-types
    • Std/osets

    Set

    A fixtype of osets.

    The fixing function used here is sfix.

    The name sequiv of the equivalence relation introduced here is ``structurally similar'' to the name sfix of the fixing function.

    Definitions and Theorems

    Function: sequiv$inline

    (defun sequiv$inline (x y)
      (declare (xargs :guard (and (setp x) (setp y))))
      (equal (sfix x) (sfix y)))

    Theorem: sequiv-is-an-equivalence

    (defthm sequiv-is-an-equivalence
      (and (booleanp (sequiv x y))
           (sequiv x x)
           (implies (sequiv x y) (sequiv y x))
           (implies (and (sequiv x y) (sequiv y z))
                    (sequiv x z)))
      :rule-classes (:equivalence))

    Theorem: sequiv-implies-equal-sfix-1

    (defthm sequiv-implies-equal-sfix-1
      (implies (sequiv x x-equiv)
               (equal (sfix x) (sfix x-equiv)))
      :rule-classes (:congruence))

    Theorem: sfix-under-sequiv

    (defthm sfix-under-sequiv
      (sequiv (sfix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-sfix-1-forward-to-sequiv

    (defthm equal-of-sfix-1-forward-to-sequiv
      (implies (equal (sfix x) y)
               (sequiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-sfix-2-forward-to-sequiv

    (defthm equal-of-sfix-2-forward-to-sequiv
      (implies (equal x (sfix y))
               (sequiv x y))
      :rule-classes :forward-chaining)

    Theorem: sequiv-of-sfix-1-forward

    (defthm sequiv-of-sfix-1-forward
      (implies (sequiv (sfix x) y)
               (sequiv x y))
      :rule-classes :forward-chaining)

    Theorem: sequiv-of-sfix-2-forward

    (defthm sequiv-of-sfix-2-forward
      (implies (sequiv x (sfix y))
               (sequiv x y))
      :rule-classes :forward-chaining)