• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
      • B*
      • Defunc
      • Fty
        • Deftagsum
        • Defprod
        • Defflexsum
        • Defbitstruct
        • Deflist
        • Defalist
        • Defbyte
        • Deffixequiv
        • Defresult
        • Deffixtype
        • Defoption
        • Fty-discipline
        • Fold
        • Fty-extensions
          • Defbyte
          • Defresult
          • Fold
          • Defsubtype
          • Defset
          • Specific-types
          • Defflatsum
          • Deflist-of-len
          • Pos-list
          • Defbytelist
          • Defomap
          • Defbyte-standard-instances
          • Deffixtype-alias
          • Defbytelist-standard-instances
          • Defunit
          • Byte-list
          • Byte
          • Database
          • Pos-option
          • Nibble
          • Nat-option
          • String-option
          • Byte-list20
          • Byte-list32
          • Byte-list64
          • Pseudo-event-form
          • Natoption/natoptionlist
          • Nati
          • Character-list
          • Nat/natlist
          • Maybe-string
          • Nibble-list
          • Natoption/natoptionlist-result
          • Nat/natlist-result
          • Nat-option-list-result
          • Set
          • String-result
          • String-list-result
          • Nat-result
          • Nat-option-result
          • Nat-list-result
          • Maybe-string-result
          • Integer-result
          • Character-result
          • Character-list-result
          • Boolean-result
          • Map
          • Bag
          • Pos-set
          • Hex-digit-char-list
          • Dec-digit-char-list
          • Pseudo-event-form-list
          • Nat-option-list
          • Symbol-set
          • String-set
          • Nat-set
            • Nat-sfix
              • Nat-setp
              • Nat-sequiv
            • Oct-digit-char-list
            • Bin-digit-char-list
            • Bit-list
          • Defsubtype
          • Defset
          • Deftypes
          • Specific-types
          • Defflatsum
          • Deflist-of-len
          • Defbytelist
          • Fty::basetypes
          • Defomap
          • Defvisitors
          • Deffixtype-alias
          • Deffixequiv-sk
          • Defunit
          • Multicase
          • Deffixequiv-mutual
          • Fty::baselists
          • Def-enumcase
          • Defmap
        • Apt
        • Std/util
        • Defdata
        • Defrstobj
        • Seq
        • Match-tree
        • Defrstobj
        • With-supporters
        • Def-partial-measure
        • Template-subst
        • Soft
        • Defthm-domain
        • Event-macros
        • Def-universal-equiv
        • Def-saved-obligs
        • With-supporters-after
        • Definec
        • Sig
        • Outer-local
        • Data-structures
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Nat-set

    Nat-sfix

    (nat-sfix x) is a usual fty set fixing function.

    Signature
    (nat-sfix x) → *
    Arguments
    x — Guard (nat-setp x).

    In the logic, we apply nfix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: nat-sfix

    (defun nat-sfix (x)
      (declare (xargs :guard (nat-setp x)))
      (mbe :logic (if (nat-setp x) x nil)
           :exec x))

    Theorem: nat-setp-of-nat-sfix

    (defthm nat-setp-of-nat-sfix
      (nat-setp (nat-sfix x)))

    Theorem: nat-sfix-when-nat-setp

    (defthm nat-sfix-when-nat-setp
      (implies (nat-setp x)
               (equal (nat-sfix x) x)))

    Theorem: emptyp-nat-sfix

    (defthm emptyp-nat-sfix
      (implies (or (set::emptyp x) (not (nat-setp x)))
               (set::emptyp (nat-sfix x))))

    Theorem: emptyp-of-nat-sfix

    (defthm emptyp-of-nat-sfix
      (equal (set::emptyp (nat-sfix x))
             (or (not (nat-setp x))
                 (set::emptyp x))))

    Function: nat-sequiv$inline

    (defun nat-sequiv$inline (x y)
      (declare (xargs :guard (and (nat-setp x) (nat-setp y))))
      (equal (nat-sfix x) (nat-sfix y)))

    Theorem: nat-sequiv-is-an-equivalence

    (defthm nat-sequiv-is-an-equivalence
      (and (booleanp (nat-sequiv x y))
           (nat-sequiv x x)
           (implies (nat-sequiv x y)
                    (nat-sequiv y x))
           (implies (and (nat-sequiv x y) (nat-sequiv y z))
                    (nat-sequiv x z)))
      :rule-classes (:equivalence))

    Theorem: nat-sequiv-implies-equal-nat-sfix-1

    (defthm nat-sequiv-implies-equal-nat-sfix-1
      (implies (nat-sequiv x x-equiv)
               (equal (nat-sfix x) (nat-sfix x-equiv)))
      :rule-classes (:congruence))

    Theorem: nat-sfix-under-nat-sequiv

    (defthm nat-sfix-under-nat-sequiv
      (nat-sequiv (nat-sfix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-nat-sfix-1-forward-to-nat-sequiv

    (defthm equal-of-nat-sfix-1-forward-to-nat-sequiv
      (implies (equal (nat-sfix x) y)
               (nat-sequiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-nat-sfix-2-forward-to-nat-sequiv

    (defthm equal-of-nat-sfix-2-forward-to-nat-sequiv
      (implies (equal x (nat-sfix y))
               (nat-sequiv x y))
      :rule-classes :forward-chaining)

    Theorem: nat-sequiv-of-nat-sfix-1-forward

    (defthm nat-sequiv-of-nat-sfix-1-forward
      (implies (nat-sequiv (nat-sfix x) y)
               (nat-sequiv x y))
      :rule-classes :forward-chaining)

    Theorem: nat-sequiv-of-nat-sfix-2-forward

    (defthm nat-sequiv-of-nat-sfix-2-forward
      (implies (nat-sequiv x (nat-sfix y))
               (nat-sequiv x y))
      :rule-classes :forward-chaining)