• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
      • B*
      • Defunc
      • Fty
      • Apt
      • Std/util
      • Defdata
      • Defrstobj
      • Seq
      • Match-tree
      • Defrstobj
      • With-supporters
      • Def-partial-measure
      • Template-subst
      • Soft
        • Soft-future-work
        • Soft-macros
          • Defun-inst
          • Defequal
          • Defsoft
          • Defthm-inst
          • Defun2
          • Defunvar
          • Defun-sk2
          • Defchoose2
          • Defthm-2nd-order
            • Define-sk2
            • Defund-sk2
            • Define2
            • Defund2
          • Updates-to-workshop-material
          • Soft-implementation
          • Soft-notions
        • Defthm-domain
        • Event-macros
        • Def-universal-equiv
        • Def-saved-obligs
        • With-supporters-after
        • Definec
        • Sig
        • Outer-local
        • Data-structures
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Soft-macros
    • Second-order-theorems

    Defthm-2nd-order

    Introduce a second-order theorem.

    General Form

    (defthm sothm ...) ; a regular defthm

    This is a normal defthm. SOFT does not provide macros for introducing second-order theorems, at this time.

    Inputs

    The inputs are the ones of defthm.

    Generated Events

    The defthm itself.

    Examples

    Example 1

    ;; Homomorphically lift ?F to on true lists of ?P values:
    (defun2 map[?f][?p] (l)
      (declare (xargs :guard (all[?p] l)))
      (cond ((endp l) nil)
            (t (cons (?f (car l)) (map[?f][?p] (cdr l))))))
    
    ;; The homomorphic lifting of ?F to lists of ?P values
    ;; preserves the length of the list,
    ;; for every function ?F and predicate ?P:
    (defthm len-of-map[?f][?p]
      (equal (len (map[?f][?p] l)) (len l)))

    Example 2

    ;; Recognize injective functions:
    (defun-sk2 injective[?f] ()
      (forall (x y) (implies (equal (?f x) (?f y)) (equal x y))))
    
    ;; The four-fold application of an injective function is injective:
    (defthm injective[quad[?f]]-when-injective[?f]
      (implies (injective[?f]) (injective[quad[?f]]))
      :hints ...)

    Example 3

    ;; Folding function on binary trees:
    (defun2 fold[?f][?g] (bt)
      (cond ((atom bt) (?f bt))
            (t (?g (fold[?f][?g] (car bt)) (fold[?f][?g] (cdr bt))))))
    
    ;; Abstract input/output relation:
    (defunvar ?io (* *) => *)
    
    ;; Recognize functions ?F that satisfy the input/output relation on atoms:
    (defun-sk2 atom-io[?f][?io] ()
      (forall x (implies (atom x) (?io x (?f x))))
      :rewrite :direct)
    
    ;; Recognize functions ?G that satisfy
    ;; the input/output relation on CONSP pairs
    ;; when the arguments are valid outputs for the CAR and CDR components:
    (defun-sk2 consp-io[?g][?io] ()
      (forall (x y1 y2)
              (implies (and (consp x) (?io (car x) y1) (?io (cdr x) y2))
                       (?io x (?g y1 y2))))
      :rewrite :direct)
    
    ;; The generic folding function on binary trees
    ;; satisfies the input/output relation
    ;; when its function parameters satisfy the predicates just introduced:
    (defthm fold-io[?f][?g][?io]
      (implies (and (atom-io[?f][?io]) (consp-io[?g][?io]))
               (?io x (fold[?f][?g] x))))