• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
      • Operational-semantics
      • Real
      • Start-here
      • Debugging
      • Miscellaneous
        • Term
          • Lambda
          • Pseudo-termp
            • Pseudo-term-fty
            • Std/typed-lists/pseudo-term-listp
          • Term-order
          • Pseudo-term-listp
          • Guard-holders
          • Termp
          • Termify
          • L<
          • Kwote
          • Kwote-lst
        • Ld
        • Hints
        • Type-set
        • Ordinals
        • Clause
        • ACL2-customization
        • With-prover-step-limit
        • Set-prover-step-limit
        • With-prover-time-limit
        • Local-incompatibility
        • Set-case-split-limitations
        • Subversive-recursions
        • Specious-simplification
        • Defsum
        • Gcl
        • Oracle-timelimit
        • Thm
        • Defopener
        • Case-split-limitations
        • Set-gc-strategy
        • Default-defun-mode
        • Top-level
        • Reader
        • Ttags-seen
        • Adviser
        • Ttree
        • Abort-soft
        • Defsums
        • Gc$
        • With-timeout
        • Coi-debug::fail
        • Expander
        • Gc-strategy
        • Coi-debug::assert
        • Sin-cos
        • Def::doc
        • Syntax
        • Subversive-inductions
      • Output-controls
      • Macros
      • Interfacing-tools
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
    • Testing-utilities
  • Term
  • ACL2-built-ins

Pseudo-termp

A predicate for recognizing term-like s-expressions

Example Forms:
(pseudo-termp '(car (cons x 'nil)))      ; has value t
(pseudo-termp '(car x y z))              ; also has value t!
(pseudo-termp '(delta (h x)))            ; has value t
(pseudo-termp '(delta (h x) . 7))        ; has value nil (not a true-listp)
(pseudo-termp '((lambda (x) (car x)) b)) ; has value t
(pseudo-termp '(if x y 123))             ; has value nil (123 is not quoted)
(pseudo-termp '(if x y '123))            ; has value t

If x is the quotation of a term, then (pseudo-termp x) is t. However, if x is not the quotation of a term it is not necessarily the case that (pseudo-termp x) is nil.

See term for a discussion of the various meanings of the word ``term'' in ACL2. In its most strict sense, a term is either a legal variable symbol, a quoted constant, or the application of an n-ary function symbol or closed lambda-expression to n terms. By ``legal variable symbol'' we exclude constant symbols, such as t, nil, and *ts-rational*. By ``quoted constants'' we include 't (aka (quote t)), 'nil, '31, etc., and exclude constant names such as t, nil and *ts-rational*, unquoted constants such as 31 or 1/2, and ill-formed quote expressions such as (quote 3 4). By ``closed lambda expression'' we exclude expressions, such as (lambda (x) (cons x y)), containing free variables in their bodies. Terms typed by the user are translated into strict terms for internal use in ACL2.

The predicate termp checks this strict sense of ``term'' with respect to a given ACL2 logical world; See world. Many ACL2 functions, such as the rewriter, require certain of their arguments to satisfy termp. However, if regarded simply from the perspective of an effective guard for a term-processing function, termp checks many irrelevant things. (Does it really matter that the variable symbols encountered never start and end with an asterisk?) We have therefore introduced the notion of a ``pseudo-term'' and embodied it in the predicate pseudo-termp, which is easier to check, does not require the logical world as input, and is often perfectly suitable as a guard on term-processing functions.

A pseudo-termp is either a symbol, a true list of length 2 beginning with the word quote, the application of an n-ary pseudo-lambda expression to a true list of n pseudo-terms, or the application of a symbol to a true list of n pseudo-termps. By an ``n-ary pseudo-lambda expression'' we mean an expression of the form (lambda (v1 ... vn) pterm), where the vi are symbols (but not necessarily distinct legal variable symbols) and pterm is a pseudo-termp.

Metafunctions may use pseudo-termp as a guard.

Subtopics

Pseudo-term-fty
Overview of FTY support for pseudo-terms.
Std/typed-lists/pseudo-term-listp
Lemmas about lists of pseudo-termps, available in the std/typed-lists library.