• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defmacro
        • Loop$-primer
        • Fast-alists
        • Defconst
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
          • Df
          • Unsigned-byte-p
          • Posp
          • Natp
          • <
          • +
          • Bitp
          • Zero-test-idioms
          • Nat-listp
          • Integerp
          • *
          • -
          • Zp
          • Signed-byte-p
          • Logbitp
            • Open-logbitp-of-const-meta
            • Ihs/logbitp-lemmas
            • Equal-by-logbitp
            • Logbit
            • Logbitp-mismatch
              • Logbitp-bounds
              • Logbitp-defaults
              • Logbitp*
            • Sharp-f-reader
            • Expt
            • <=
            • Ash
            • Rationalp
            • =
            • Nfix
            • Logand
            • Floor
            • Random$
            • Integer-listp
            • Complex
            • Numbers-introduction
            • Truncate
            • Code-char
            • Char-code
            • Integer-length
            • Zip
            • Logior
            • Sharp-u-reader
            • Mod
            • Unary--
            • Boole$
            • /
            • Logxor
            • Ifix
            • Lognot
            • Integer-range-p
            • Allocate-fixnum-range
            • ACL2-numberp
            • Sharp-d-reader
            • Mod-expt
            • Ceiling
            • Round
            • Logeqv
            • Fix
            • Explode-nonnegative-integer
            • Max
            • Evenp
            • Zerop
            • Abs
            • Nonnegative-integer-quotient
            • Rfix
            • 1+
            • Pos-listp
            • Signum
            • Rem
            • Real/rationalp
            • Rational-listp
            • >=
            • >
            • Logcount
            • ACL2-number-listp
            • /=
            • Unary-/
            • Realfix
            • Complex/complex-rationalp
            • Logtest
            • Logandc1
            • Logorc1
            • Logandc2
            • Denominator
            • 1-
            • Numerator
            • Logorc2
            • The-number
            • Int=
            • Complex-rationalp
            • Min
            • Lognor
            • Zpf
            • Oddp
            • Minusp
            • Lognand
            • Imagpart
            • Conjugate
            • Realpart
            • Plusp
          • Efficiency
          • Irrelevant-formals
          • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
          • Redefining-programs
          • Lists
          • Invariant-risk
          • Errors
          • Defabbrev
          • Conses
          • Alists
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Debugging
        • Miscellaneous
        • Output-controls
        • Macros
        • Interfacing-tools
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Bitops
    • Logbitp

    Logbitp-mismatch

    (logbitp-mismatch a b) finds the minimal bit-position for which a and b differ, or returns NIL if no such bit exists.

    This is mainly useful for proving equal-by-logbitp, but it's also occasionally useful as a witness in other theorems.

    Definitions and Theorems

    Function: logbitp-mismatch

    (defun logbitp-mismatch (a b)
      (declare (xargs :guard (and (integerp a) (integerp b))))
      (cond ((not (equal (logcar a) (logcar b))) 0)
            ((and (zp (integer-length a))
                  (zp (integer-length b)))
             nil)
            (t (let ((tail (logbitp-mismatch (logcdr a)
                                             (logcdr b))))
                 (and tail (+ 1 tail))))))

    Theorem: logbitp-mismatch-under-iff

    (defthm logbitp-mismatch-under-iff
      (iff (logbitp-mismatch a b)
           (not (equal (ifix a) (ifix b)))))

    Theorem: logbitp-mismatch-correct

    (defthm logbitp-mismatch-correct
      (implies (logbitp-mismatch a b)
               (not (equal (logbitp (logbitp-mismatch a b) a)
                           (logbitp (logbitp-mismatch a b) b)))))

    Theorem: logbitp-mismatch-upper-bound

    (defthm logbitp-mismatch-upper-bound
      (implies (logbitp-mismatch a b)
               (<= (logbitp-mismatch a b)
                   (max (integer-length a)
                        (integer-length b))))
      :rule-classes ((:rewrite) (:linear)))

    Theorem: logbitp-mismatch-upper-bound-for-nonnegatives

    (defthm logbitp-mismatch-upper-bound-for-nonnegatives
      (implies (and (not (and (integerp a) (< a 0)))
                    (not (and (integerp b) (< b 0)))
                    (logbitp-mismatch a b))
               (< (logbitp-mismatch a b)
                  (max (integer-length a)
                       (integer-length b))))
      :rule-classes ((:rewrite)
                     (:linear :trigger-terms ((logbitp-mismatch a b)))))

    Theorem: integerp-of-logbitp-mismatch

    (defthm integerp-of-logbitp-mismatch
      (iff (integerp (logbitp-mismatch a b))
           (logbitp-mismatch a b)))