• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defmacro
        • Loop$-primer
        • Fast-alists
        • Defconst
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
          • Member
          • Append
          • List
          • Nth
          • Len
          • True-listp
          • String-listp
          • Nat-listp
          • Character-listp
          • Symbol-listp
          • True-list-listp
          • Length
          • Search
          • Intersection$
          • Union$
          • Remove-duplicates
          • Position
          • Update-nth
          • Take
          • Nthcdr
          • Set-difference$
          • Subsetp
          • No-duplicatesp
          • Concatenate
          • Remove
          • Remove1
          • Intersectp
          • Endp
          • Keyword-value-listp
          • Integer-listp
          • Reverse
          • Add-to-set
          • List-utilities
          • Set-size
          • Revappend
          • Subseq
          • Make-list
          • Last
          • Lists-light
          • Boolean-listp
          • Butlast
          • Pairlis$
          • Substitute
          • Count
            • Duplicity
              • Duplicity-badguy
                • Duplicity-badguy1
              • No-duplicatesp-equal-same-by-duplicity
          • Keyword-listp
          • List*
          • Eqlable-listp
          • Pos-listp
          • Integer-range-listp
          • Rational-listp
          • Evens
          • Atom-listp
          • ACL2-number-listp
          • Typed-list-utilities
          • Odds
          • List$
          • Listp
          • Standard-char-listp
          • Last-cdr
          • Pairlis
          • Proper-consp
          • Improper-consp
          • Pairlis-x2
          • Pairlis-x1
          • Merge-sort-lexorder
          • Fix-true-list
          • Real-listp
        • Invariant-risk
        • Errors
        • Defabbrev
        • Conses
        • Alists
        • Set-register-invariant-risk
        • Strings
        • Program-wrapper
        • Get-internal-time
        • Basics
        • Packages
        • Oracle-eval
        • Defmacro-untouchable
        • <<
        • Primitive
        • Revert-world
        • Unmemoize
        • Set-duplicate-keys-action
        • Symbols
        • Def-list-constructor
        • Easy-simplify-term
        • Defiteration
        • Fake-oracle-eval
        • Defopen
        • Sleep
      • Operational-semantics
      • Real
      • Start-here
      • Debugging
      • Miscellaneous
      • Output-controls
      • Macros
      • Interfacing-tools
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
    • Testing-utilities
  • Duplicity
  • No-duplicatesp-equal-same-by-duplicity

Duplicity-badguy

(duplicity-badguy x) finds an element that occurs multiple times in the list x, if one exists.

This function is central to our proof of no-duplicatesp-equal-same-by-duplicity, a pick-a-point style strategy for proving that no-duplicatesp holds of a list by reasoning about duplicity of an arbitrary element.

Definitions and Theorems

Function: duplicity-badguy

(defun duplicity-badguy (x)
  (declare (xargs :guard t))
  (duplicity-badguy1 x x))

Theorem: duplicity-badguy-exists

(defthm duplicity-badguy-exists
  (implies (duplicity-badguy x)
           (member-equal (car (duplicity-badguy x))
                         x)))

Theorem: duplicity-badguy-has-high-duplicity

(defthm duplicity-badguy-has-high-duplicity
  (implies (duplicity-badguy x)
           (< 1
              (duplicity (car (duplicity-badguy x))
                         x))))

Theorem: duplicity-badguy-is-complete

(defthm duplicity-badguy-is-complete
  (implies (< 1 (duplicity a x))
           (duplicity-badguy x)))

Theorem: duplicity-badguy-under-iff

(defthm duplicity-badguy-under-iff
  (iff (duplicity-badguy x)
       (not (no-duplicatesp-equal x))))

Subtopics

Duplicity-badguy1
(duplicity-badguy1 dom x) finds the first element of dom whose duplicity in x exceeds 1, if such a member exists.