Basic equivalence relation for senv structures.
Function:
(defun senv-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (senvp acl2::x) (senvp acl2::y)))) (equal (senv-fix acl2::x) (senv-fix acl2::y)))
Theorem:
(defthm senv-equiv-is-an-equivalence (and (booleanp (senv-equiv x y)) (senv-equiv x x) (implies (senv-equiv x y) (senv-equiv y x)) (implies (and (senv-equiv x y) (senv-equiv y z)) (senv-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm senv-equiv-implies-equal-senv-fix-1 (implies (senv-equiv acl2::x x-equiv) (equal (senv-fix acl2::x) (senv-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm senv-fix-under-senv-equiv (senv-equiv (senv-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-senv-fix-1-forward-to-senv-equiv (implies (equal (senv-fix acl2::x) acl2::y) (senv-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-senv-fix-2-forward-to-senv-equiv (implies (equal acl2::x (senv-fix acl2::y)) (senv-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm senv-equiv-of-senv-fix-1-forward (implies (senv-equiv (senv-fix acl2::x) acl2::y) (senv-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm senv-equiv-of-senv-fix-2-forward (implies (senv-equiv acl2::x (senv-fix acl2::y)) (senv-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)