Basic equivalence relation for asgop structures.
Function:
(defun asgop-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (asgopp acl2::x) (asgopp acl2::y)))) (equal (asgop-fix acl2::x) (asgop-fix acl2::y)))
Theorem:
(defthm asgop-equiv-is-an-equivalence (and (booleanp (asgop-equiv x y)) (asgop-equiv x x) (implies (asgop-equiv x y) (asgop-equiv y x)) (implies (and (asgop-equiv x y) (asgop-equiv y z)) (asgop-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm asgop-equiv-implies-equal-asgop-fix-1 (implies (asgop-equiv acl2::x x-equiv) (equal (asgop-fix acl2::x) (asgop-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm asgop-fix-under-asgop-equiv (asgop-equiv (asgop-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-asgop-fix-1-forward-to-asgop-equiv (implies (equal (asgop-fix acl2::x) acl2::y) (asgop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-asgop-fix-2-forward-to-asgop-equiv (implies (equal acl2::x (asgop-fix acl2::y)) (asgop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm asgop-equiv-of-asgop-fix-1-forward (implies (asgop-equiv (asgop-fix acl2::x) acl2::y) (asgop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm asgop-equiv-of-asgop-fix-2-forward (implies (asgop-equiv acl2::x (asgop-fix acl2::y)) (asgop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)