• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Riscv
      • Taspi
      • Bitcoin
      • Des
      • Ethereum
      • X86isa
      • Sha-2
      • Yul
      • Zcash
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
      • Json
      • Jfkr
      • Equational
      • Cryptography
      • Poseidon
      • Where-do-i-place-my-book
      • Axe
      • Aleo
        • Aleobft
        • Aleovm
        • Leo
          • Grammar
          • Early-version
            • Json2ast
            • Testing
            • Definition
              • Flattening
              • Abstract-syntax
                • Expression
                • Syntax-abstraction
                • Statement
                • Files
                • Input-files
                • Identifiers
                • Types
                • Struct-init
                • Branch
                • Statements
                • Format-strings
                • Input-syntax-abstraction
                • Expressions
                  • Binop
                    • Binopp
                      • Binop-case
                      • Binop-fix
                      • Binop-kind
                      • Binop-equiv
                      • Binop-add
                      • Binop-sub
                      • Binop-gt
                      • Binop-sub-wrapped
                      • Binop-shr-wrapped
                      • Binop-shr
                      • Binop-shl-wrapped
                      • Binop-shl
                      • Binop-rem-wrapped
                      • Binop-rem
                      • Binop-pow-wrapped
                      • Binop-pow
                      • Binop-or
                      • Binop-nor
                      • Binop-ne
                      • Binop-nand
                      • Binop-mul-wrapped
                      • Binop-mul
                      • Binop-lt
                      • Binop-le
                      • Binop-ge
                      • Binop-eq
                      • Binop-div-wrapped
                      • Binop-div
                      • Binop-bitxor
                      • Binop-bitior
                      • Binop-bitand
                      • Binop-and
                      • Binop-add-wrapped
                    • Unop
                    • Expression-option
                    • Struct-init-list-result
                    • Expression-option-result
                    • Unop-result
                    • Struct-init-result
                    • Expression-result
                    • Expression-list-result
                    • Binop-result
                    • Expression-fixtypes
                  • Output-files
                  • Addresses
                  • Literals
                  • Characters
                  • Expression-list
                  • Statement-list
                  • Output-syntax-abstraction
                  • Struct-init-list
                  • Branch-list
                  • Annotations
                  • Abstract-syntax-trees
                  • Symbols
                  • Keywords
                  • Programs
                  • Packages
                  • Bit-sizes
                • Dynamic-semantics
                • Compilation
                • Static-semantics
                • Concrete-syntax
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Binop

    Binopp

    Recognizer for binop structures.

    Signature
    (binopp x) → *

    Definitions and Theorems

    Function: binopp

    (defun binopp (x)
      (declare (xargs :guard t))
      (let ((__function__ 'binopp))
        (declare (ignorable __function__))
        (and (consp x)
             (cond ((or (atom x) (eq (car x) :and))
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :or)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :eq)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :ne)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :ge)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :gt)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :le)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :lt)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :bitxor)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :bitior)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :bitand)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :shl)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :shr)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :add)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :sub)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :mul)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :div)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :rem)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :pow)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :nand)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :nor)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :shl-wrapped)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :shr-wrapped)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :add-wrapped)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :sub-wrapped)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :mul-wrapped)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :div-wrapped)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   ((eq (car x) :rem-wrapped)
                    (and (true-listp (cdr x))
                         (eql (len (cdr x)) 0)
                         (b* nil t)))
                   (t (and (eq (car x) :pow-wrapped)
                           (and (true-listp (cdr x))
                                (eql (len (cdr x)) 0))
                           (b* nil t)))))))

    Theorem: consp-when-binopp

    (defthm consp-when-binopp
      (implies (binopp x) (consp x))
      :rule-classes :compound-recognizer)