Basic equivalence relation for mappingdecl structures.
Function:
(defun mappingdecl-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (mappingdeclp acl2::x) (mappingdeclp acl2::y)))) (equal (mappingdecl-fix acl2::x) (mappingdecl-fix acl2::y)))
Theorem:
(defthm mappingdecl-equiv-is-an-equivalence (and (booleanp (mappingdecl-equiv x y)) (mappingdecl-equiv x x) (implies (mappingdecl-equiv x y) (mappingdecl-equiv y x)) (implies (and (mappingdecl-equiv x y) (mappingdecl-equiv y z)) (mappingdecl-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm mappingdecl-equiv-implies-equal-mappingdecl-fix-1 (implies (mappingdecl-equiv acl2::x x-equiv) (equal (mappingdecl-fix acl2::x) (mappingdecl-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm mappingdecl-fix-under-mappingdecl-equiv (mappingdecl-equiv (mappingdecl-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-mappingdecl-fix-1-forward-to-mappingdecl-equiv (implies (equal (mappingdecl-fix acl2::x) acl2::y) (mappingdecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-mappingdecl-fix-2-forward-to-mappingdecl-equiv (implies (equal acl2::x (mappingdecl-fix acl2::y)) (mappingdecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm mappingdecl-equiv-of-mappingdecl-fix-1-forward (implies (mappingdecl-equiv (mappingdecl-fix acl2::x) acl2::y) (mappingdecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm mappingdecl-equiv-of-mappingdecl-fix-2-forward (implies (mappingdecl-equiv acl2::x (mappingdecl-fix acl2::y)) (mappingdecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)