Basic equivalence relation for fundecl structures.
Function:
(defun fundecl-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (fundeclp acl2::x) (fundeclp acl2::y)))) (equal (fundecl-fix acl2::x) (fundecl-fix acl2::y)))
Theorem:
(defthm fundecl-equiv-is-an-equivalence (and (booleanp (fundecl-equiv x y)) (fundecl-equiv x x) (implies (fundecl-equiv x y) (fundecl-equiv y x)) (implies (and (fundecl-equiv x y) (fundecl-equiv y z)) (fundecl-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fundecl-equiv-implies-equal-fundecl-fix-1 (implies (fundecl-equiv acl2::x x-equiv) (equal (fundecl-fix acl2::x) (fundecl-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fundecl-fix-under-fundecl-equiv (fundecl-equiv (fundecl-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fundecl-fix-1-forward-to-fundecl-equiv (implies (equal (fundecl-fix acl2::x) acl2::y) (fundecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fundecl-fix-2-forward-to-fundecl-equiv (implies (equal acl2::x (fundecl-fix acl2::y)) (fundecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fundecl-equiv-of-fundecl-fix-1-forward (implies (fundecl-equiv (fundecl-fix acl2::x) acl2::y) (fundecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fundecl-equiv-of-fundecl-fix-2-forward (implies (fundecl-equiv acl2::x (fundecl-fix acl2::y)) (fundecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)