Basic equivalence relation for location structures.
Function:
(defun location-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (locationp acl2::x) (locationp acl2::y)))) (equal (location-fix acl2::x) (location-fix acl2::y)))
Theorem:
(defthm location-equiv-is-an-equivalence (and (booleanp (location-equiv x y)) (location-equiv x x) (implies (location-equiv x y) (location-equiv y x)) (implies (and (location-equiv x y) (location-equiv y z)) (location-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm location-equiv-implies-equal-location-fix-1 (implies (location-equiv acl2::x x-equiv) (equal (location-fix acl2::x) (location-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm location-fix-under-location-equiv (location-equiv (location-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-location-fix-1-forward-to-location-equiv (implies (equal (location-fix acl2::x) acl2::y) (location-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-location-fix-2-forward-to-location-equiv (implies (equal acl2::x (location-fix acl2::y)) (location-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm location-equiv-of-location-fix-1-forward (implies (location-equiv (location-fix acl2::x) acl2::y) (location-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm location-equiv-of-location-fix-2-forward (implies (location-equiv acl2::x (location-fix acl2::y)) (location-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)