Fixing function for location structures.
Function:
(defun location-fix$inline (x) (declare (xargs :guard (locationp x))) (let ((__function__ 'location-fix)) (declare (ignorable __function__)) (mbe :logic (case (location-kind x) (:var (b* ((name (identifier-fix (std::da-nth 0 (cdr x))))) (cons :var (list name)))) (:tuple-comp (b* ((tuple (location-fix (std::da-nth 0 (cdr x)))) (index (nfix (std::da-nth 1 (cdr x))))) (cons :tuple-comp (list tuple index)))) (:struct-comp (b* ((struct (location-fix (std::da-nth 0 (cdr x)))) (name (identifier-fix (std::da-nth 1 (cdr x))))) (cons :struct-comp (list struct name))))) :exec x)))
Theorem:
(defthm locationp-of-location-fix (b* ((new-x (location-fix$inline x))) (locationp new-x)) :rule-classes :rewrite)
Theorem:
(defthm location-fix-when-locationp (implies (locationp x) (equal (location-fix x) x)))
Function:
(defun location-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (locationp acl2::x) (locationp acl2::y)))) (equal (location-fix acl2::x) (location-fix acl2::y)))
Theorem:
(defthm location-equiv-is-an-equivalence (and (booleanp (location-equiv x y)) (location-equiv x x) (implies (location-equiv x y) (location-equiv y x)) (implies (and (location-equiv x y) (location-equiv y z)) (location-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm location-equiv-implies-equal-location-fix-1 (implies (location-equiv acl2::x x-equiv) (equal (location-fix acl2::x) (location-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm location-fix-under-location-equiv (location-equiv (location-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-location-fix-1-forward-to-location-equiv (implies (equal (location-fix acl2::x) acl2::y) (location-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-location-fix-2-forward-to-location-equiv (implies (equal acl2::x (location-fix acl2::y)) (location-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm location-equiv-of-location-fix-1-forward (implies (location-equiv (location-fix acl2::x) acl2::y) (location-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm location-equiv-of-location-fix-2-forward (implies (location-equiv acl2::x (location-fix acl2::y)) (location-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm location-kind$inline-of-location-fix-x (equal (location-kind$inline (location-fix x)) (location-kind$inline x)))
Theorem:
(defthm location-kind$inline-location-equiv-congruence-on-x (implies (location-equiv x x-equiv) (equal (location-kind$inline x) (location-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-location-fix (consp (location-fix x)) :rule-classes :type-prescription)