Leo bitwise-and operation
(op-bitand left right) → result
This
Function:
(defun op-bitand (left right) (declare (xargs :guard (and (valuep left) (valuep right)))) (let ((__function__ 'op-bitand)) (declare (ignorable __function__)) (b* ((err (list :op-bitand (value-fix left) (value-fix right)))) (cond ((and (value-case left :bool) (value-case right :bool)) (let ((leftval (value-bool->get left)) (rightval (value-bool->get right))) (value-bool (and leftval rightval)))) ((and (value-case left :u8) (value-case right :u8)) (value-u8 (logand (value-u8->get left) (value-u8->get right)))) ((and (value-case left :u16) (value-case right :u16)) (value-u16 (logand (value-u16->get left) (value-u16->get right)))) ((and (value-case left :u32) (value-case right :u32)) (value-u32 (logand (value-u32->get left) (value-u32->get right)))) ((and (value-case left :u64) (value-case right :u64)) (value-u64 (logand (value-u64->get left) (value-u64->get right)))) ((and (value-case left :u128) (value-case right :u128)) (value-u128 (logand (value-u128->get left) (value-u128->get right)))) ((and (value-case left :i8) (value-case right :i8)) (value-i8 (logand (value-i8->get left) (value-i8->get right)))) ((and (value-case left :i16) (value-case right :i16)) (value-i16 (logand (value-i16->get left) (value-i16->get right)))) ((and (value-case left :i32) (value-case right :i32)) (value-i32 (logand (value-i32->get left) (value-i32->get right)))) ((and (value-case left :i64) (value-case right :i64)) (value-i64 (logand (value-i64->get left) (value-i64->get right)))) ((and (value-case left :i128) (value-case right :i128)) (value-i128 (logand (value-i128->get left) (value-i128->get right)))) (t (reserrf err))))))
Theorem:
(defthm value-resultp-of-op-bitand (b* ((result (op-bitand left right))) (value-resultp result)) :rule-classes :rewrite)
Theorem:
(defthm op-bitand-of-value-fix-left (equal (op-bitand (value-fix left) right) (op-bitand left right)))
Theorem:
(defthm op-bitand-value-equiv-congruence-on-left (implies (value-equiv left left-equiv) (equal (op-bitand left right) (op-bitand left-equiv right))) :rule-classes :congruence)
Theorem:
(defthm op-bitand-of-value-fix-right (equal (op-bitand left (value-fix right)) (op-bitand left right)))
Theorem:
(defthm op-bitand-value-equiv-congruence-on-right (implies (value-equiv right right-equiv) (equal (op-bitand left right) (op-bitand left right-equiv))) :rule-classes :congruence)