Recognizer for expr-grade structures.
(expr-gradep x) → *
Function:
(defun expr-gradep (x) (declare (xargs :guard t)) (let ((__function__ 'expr-gradep)) (declare (ignorable __function__)) (and (consp x) (cond ((or (atom x) (eq (car x) :top)) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :conditional) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :disjunctive) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :conjunctive) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :equality) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :ordering) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :bitwise-xor) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :bitwise-ior) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :bitwise-and) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :shift) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :additive) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :multiplicative) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :exponential) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :unary) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :postfix) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) (t (and (eq (car x) :primary) (and (true-listp (cdr x)) (eql (len (cdr x)) 0)) (b* nil t)))))))
Theorem:
(defthm consp-when-expr-gradep (implies (expr-gradep x) (consp x)) :rule-classes :compound-recognizer)