Recognizer for binop structures.
(binopp x) → *
Function:
(defun binopp (x) (declare (xargs :guard t)) (let ((__function__ 'binopp)) (declare (ignorable __function__)) (and (consp x) (cond ((or (atom x) (eq (car x) :and)) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :or) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :eq) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :ne) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :ge) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :gt) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :le) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :lt) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :bitxor) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :bitior) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :bitand) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :shl) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :shr) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :add) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :sub) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :mul) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :div) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :rem) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :pow) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :nand) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :nor) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :shl-wrapped) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :shr-wrapped) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :add-wrapped) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :sub-wrapped) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :mul-wrapped) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :div-wrapped) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :rem-wrapped) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) (t (and (eq (car x) :pow-wrapped) (and (true-listp (cdr x)) (eql (len (cdr x)) 0)) (b* nil t)))))))
Theorem:
(defthm consp-when-binopp (implies (binopp x) (consp x)) :rule-classes :compound-recognizer)