Fixing function for constdecl structures.
(constdecl-fix x) → new-x
Function:
(defun constdecl-fix$inline (x) (declare (xargs :guard (constdeclp x))) (let ((__function__ 'constdecl-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((name (identifier-fix (cdr (std::da-nth 0 (cdr x))))) (type (type-fix (cdr (std::da-nth 1 (cdr x))))) (init (expression-fix (cdr (std::da-nth 2 (cdr x)))))) (cons :constdecl (list (cons 'name name) (cons 'type type) (cons 'init init)))) :exec x)))
Theorem:
(defthm constdeclp-of-constdecl-fix (b* ((new-x (constdecl-fix$inline x))) (constdeclp new-x)) :rule-classes :rewrite)
Theorem:
(defthm constdecl-fix-when-constdeclp (implies (constdeclp x) (equal (constdecl-fix x) x)))
Function:
(defun constdecl-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (constdeclp acl2::x) (constdeclp acl2::y)))) (equal (constdecl-fix acl2::x) (constdecl-fix acl2::y)))
Theorem:
(defthm constdecl-equiv-is-an-equivalence (and (booleanp (constdecl-equiv x y)) (constdecl-equiv x x) (implies (constdecl-equiv x y) (constdecl-equiv y x)) (implies (and (constdecl-equiv x y) (constdecl-equiv y z)) (constdecl-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm constdecl-equiv-implies-equal-constdecl-fix-1 (implies (constdecl-equiv acl2::x x-equiv) (equal (constdecl-fix acl2::x) (constdecl-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm constdecl-fix-under-constdecl-equiv (constdecl-equiv (constdecl-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-constdecl-fix-1-forward-to-constdecl-equiv (implies (equal (constdecl-fix acl2::x) acl2::y) (constdecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-constdecl-fix-2-forward-to-constdecl-equiv (implies (equal acl2::x (constdecl-fix acl2::y)) (constdecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm constdecl-equiv-of-constdecl-fix-1-forward (implies (constdecl-equiv (constdecl-fix acl2::x) acl2::y) (constdecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm constdecl-equiv-of-constdecl-fix-2-forward (implies (constdecl-equiv acl2::x (constdecl-fix acl2::y)) (constdecl-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)